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Abstract. A parallel computational method SDPARA-C is presented for SDPs (semidefinite
programs). It combines two methods SDPARA and SDPA-C proposed by the authors who devel-
oped a software package SDPA. SDPARA is a parallel implementation of SDPA and it features
parallel computation of the elements of the Schur complement equation system and a parallel
Cholesky factorization of its coefficient matrix. SDPARA can effectively solve SDPs with a large
number of equality constraints; however, it does not solve SDPs with a large scale matrix vari-
able with similar effectiveness. SDPA-C is a primal-dual interior-point method using the positive
definite matrix completion technique by Fukuda et al, and it performs effectively with SDPs with
a large scale matrix variable, but not with a large number of equality constraints. SDPARA-C
benefits from the strong performance of each of the two methods. Furthermore, SDPARA-C is
designed to attain a high scalability by considering most of the expensive computations involved
in the primal-dual interior-point method. Numerical experiments with the three parallel software
packages SDPARA-C, SDPARA and PDSDP by Benson show that SDPARA-C efficiently solves
SDPs with a large scale matrix variable as well as a large number of equality constraints with a
small amount of memory.
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1 Introduction

Semidefinite programs (SDPs) have gained a lot of attention in recent years with applications
arising from a diverse range of fields including structural optimization, system and control, statis-
tics [4], financial engineering [14], and quantum chemistry [24]. The solution of an SDP has been
found using primal-dual interior-point methods. The development of efficient primal-dual interior-
point methods has become a key issue to handle SDPs. For more information on SDP and the
primal-dual interior-point method, see e.g., the papers [21, 29].

Many software packages for solving SDPs with the primal-dual interior-point method have
been developed and are now available on the Internet. These include SDPA [30] developed by
the authors, and various other packages such as CDSP [6], SeDuMi [25] and SDPT3 [27]. These
software packages are known to be successful to solve small to medium size SDPs. However,
solving large-scale SDPs still remains a difficult problem. Some of the difficult issues involving
large-scale SDPs are being unable to store the matrix variables in the computer memory or being
unable to run the algorithm to completion within a practical time scale. A variety of methods
have been proposed to address these issues, including methods in which an iterative solution is
applied to the Schur complement equation system (a linear equation system needed to compute a
search direction vector) [10, 23, 26], interior-point methods that exploit the sparse structure of the
problem [8, 11], a dual interior-point method DSDP [2] and its parallel implementation PDSDP
[1], the spectral bundle method [16], first-order nonlinear programming methods [9, 16] and a
generalized augmented Lagrangian method [18].

The amount of data storage needed for the matrix variables of the primal and dual problems
corresponds to the size of the data matrix in the standard form SDP and its dual problem. When
the data matrix is sparse, the dual matrix variable inherits this sparsity but in general the matrix
variable of the primal problem forms a completely dense matrix. This is a major drawback of the
primal-dual interior-point method. To address this drawback, SDPA-C (the primal-dual interior-
point method using (positive definite) matrix completion) was proposed [12, 22]. This method
was developed by adapting SDPA to use (positive definite) matrix completion theory to perform
a sparse factorization of the primal matrix variable, and by incorporating matrix computations
that take advantage of this sparsity. Since this method does not store the primal matrix variable
directly, the amount of memory used for the primal matrix variable can be greatly reduced.

The computation times can also be reduced because this method does not perform any com-
putation in which the dense matrix is handled directly, so that SDPs having a large but sparse
data matrix can be solved in a shorter time with less memory. But on the other hand, the coeffi-
cient matrix of the Schur complement equation system – which is solved at each iteration of the
primal-dual interior-point method – usually forms a dense positive definite matrix even when the
data matrix is sparse (see [3, 28] for some exceptional cases). Furthermore, its size matches the
number of linear equality constraints in the primal problem. As a result, when SDPA-C is used
for ordinary large-scale SDP problems, it does not reach a solution efficiently because there are
bottlenecks in the computation of the coefficient matrix of the Schur complement equation system
and in the Cholesky factorization.

In the paper [31], we proposed SDPARA (SemiDefinite Programming Algorithm PARAllel Ver-
sion). Since the above bottlenecks occur when solving SDPs where the primal problem has a large
number of linear equality constraints, SDPARA uses tools such as MPI [15] and ScaLAPACK [5]
to apply parallel computing to the computation of the coefficient matrix in the Schur complement
equation system and to the Cholesky factorization. As a result, the computation times and mem-
ory requirements relating to the coefficient matrix of the Schur complement equation system and
the Cholesky factorization have been greatly reduced. However, with this method, since the dense
primal matrix variables are stored and manipulated directly, the increased size of the SDP data
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matrix results in requiring more time and memory for the computations relating to the primal
matrix variables.

In this paper we propose SDPARA-C, which is obtained by combining and enhancing the
primal-dual interior-point method of SDPA-C using matrix completion theory [12, 22] and the
parallel primal-dual interior-point method of SDPARA [31]. This allows us to retain benefits of
SDPA-C and SDPARA while compensating for their drawbacks. The Cholesky factorization of the
coefficient matrix of the Schur complement equation system – which is solved at each iteration of
the primal-dual interior-point method – is made to run in parallel in the same way as in [31]. Also,
the computation of this coefficient matrix is improved so that the load is kept equally balanced
based on the method proposed in [31]. Furthermore, we arrive at a highly scalable implementation
by employing parallel processing for all the computations that take up most of the computation
time in other places where bottlenecks are liable to occur. This makes it possible to solve SDPs
with large sparse data matrices and large numbers of linear equality constraints in less time and
with less memory.

This paper is organized as follows. In section 2, we present an overview of SDPA-C and
SDPARA and their drawbacks. In section 3 we propose SDPARA-C. In section 4 we perform
numerical experiments to evaluate the efficiency of SDPARA-C, and in section 5 we present our
conclusions.

2 Previous studies

In this section we first discuss the standard interior-point method for solving SDPs. We then
present an overview of techniques in which parallel processing is applied to the primal-dual interior-
point method involving the use of matrix completion theory as proposed in the papers [12, 22],
and the primal-dual interior-point method proposed in the paper [31], and we describe some issues
associated with these techniques.

2.1 Solving SDPs with the primal-dual interior-point method

Let Sn denote the vector space of n × n symmetric matrices. For a pair of matrices X, Y ∈ Sn,
the inner product is defined as X •Y =

∑n
i=1

∑n
j=1 XijYij . We use the notation X ∈ Sn

+ (Sn
++) to

indicate that X ∈ Sn is positive semidefinite (or positive definite). Given Ap ∈ Sn (p = 0, 1, . . . , m)
and b = (b1, b2, . . . , bm)T ∈ Rm, the standard form SDP is written as follows:

minimize A0 •X
subject to Ap •X = bp (p = 1, 2, . . . , m), X ∈ Sn

+

}
. (1)

The corresponding dual problem is as follows:

maximize
m∑

p=1

bpzp

subject to
m∑

p=1

Apzp + Y = A0, Y ∈ Sn
+





. (2)

It is known that primal-dual interior-point methods are capable of solving these problems
in polynomial time. There have been proposed many primal-dual interior-point methods such
as the path-following method and the Mehrotra-type predictor-corrector method, and various
types of search directions used therein such as the HRVW/KSH/M search direction and the NT
search direction. Although most of implementation of primal-dual interior-point methods employ
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the Mehrotra-type predictor-corrector method due to its computational efficiency, we choose a
simpler path-following method to effectively exploit sparsity of SDPs using the matrix completion
technique; the Mehrotra-type predictor-corrector method, which is more sophisticated than the
path-following method, would not fit the matrix completion technique [12, 22]. We also use the
HRVW/KSH/M search direction. The HRVW/KSH/M search direction (dX, dY , dz) ∈ Sn×Sn×
Rm is defined as “the Newton-type direction toward the central path”, and is computed by reducing
it to a system of linear equations in the vector variable dz ∈ Rm known as the Schur complement
equation system [11, 19]. The path-following primal-dual interior-point method with the use of
the HRVW/KSH/M search direction can be summarized as described below.

Algorithm 2.1: The basic primal-dual interior-point method

Step 0: Set up parameters γ1, γ2 ∈ (0, 1), choose a starting point (X, Y , z) ∈ Sn
++×Sn

++×Rm,
and set µ := 1

nX • Y .

Step 1: Compute the search direction (dX, dY , dz) ∈ Sn × Sn × Rm.

Step 1a: Set µ := γ1µ and compute the residuals r ∈ Rm, R ∈ Sn, C ∈ Rn×n defined as
follows:

rp := bp −Ap •X (p = 1, 2, . . . ,m),
R := A0 −

∑m
p=1 Apzp − Y , C := µI −XY .

Step 1b: Compute the m×m matrix B and the vector s ∈ Rm.

Bpq := Ap •XAqY
−1 (p, q = 1, 2, . . . ,m), (3)

sp := rp −Ap • (C −XR)Y −1 (p = 1, 2, . . . ,m).

It is known that B is usually a fully dense positive definite symmetric matrix [11] (see
[3, 28] for some exceptional cases).

Step 1c: Solve the Schur complement equation system Bdz = s to find dz.
Step 1d: Compute dY and dX from dz.

dY := R−
m∑

p=1

Apdzp, d̃X := (C −XdY )Y −1, dX := (d̃X + d̃X
T
)/2.

Step 2: Determine the largest step size αp, αd in the search direction (dX, dY , dz).

αp := −1.0/λmin(
√

X
−1

dX
√

X
−T

), αd := −1.0/λmin(
√

Y
−1

dY
√

Y
−T

).

where
√

G denotes a matrix that satisfies
√

G
√

G
T

= G ∈ Sn
++, and λmin(H) is the mini-

mum eigenvalue of matrix H ∈ Sn.

Step 3: Update the iteration point (X, Y , z) from the search direction and the step size, and
return to Step 1.

X := X + γ2αpdX ∈ Sn
++, Y := Y + γ2αddY ∈ Sn

++, z := z + γ2αddz.

A characteristic of Algorithm 2.1 is that the matrices X and Y obtained at each iteration are
positive definite, which is how the interior-point method gets its name. In practice, the efficiency
of Algorithm 2.1 will greatly differ depending on what sort of algorithms and data structures are
used. Our aim is to solve large-scale sparse SDPs with the smallest possible computation time and
memory usage. To clarify the following discussion, we classify the parts that consume the bulk of
the computation time into four types based on SDPA6.0 [30]
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• Computing the value of each element in the dense matrix B ∈ Sm
++ at Step 1b.

• Performing the Cholesky factorization of B ∈ Sm
++ when solving the Schur complement

equation system Bdz = s at Step 1c.

• Computing the matrix variable d̃X at Step 1d.

• Performing computations involving other n× n dense matrices such as X and Y −1.

These categories correspond to the parts where parallel processing is introduced as described
later in this paper. When solving a large-scale SDP, the acquisition of memory also forms a
bottleneck in many cases. Therefore we also classify the processes according to their memory
requirements. When using Algorithm 2.1 to solve an SDP, the bulk of the memory consumption
can be classified into the following two categories:

• The dense matrix B ∈ Sm
++

• n× n matrices such as the SDP matrix variables X and Y and their inverses.

In the remainder of this section, based on the aforementioned classifications of computation
time and memory usage, we clarify the characteristics of SDPA-C involving the use of matrix
completion technique [12, 22] and SDPARA [31] in which parallel processing is applied.

2.2 A primal-dual interior-point method using matrix completion

The papers [12, 22] propose a method in which matrix completion theory is applied to the primal-
dual interior-point method in an efficient manner. These papers propose two methods – a comple-
tion method and a conversion method – but here we discuss the completion method (SDPA-C),
which is related to the present paper.

In SDPA-C, crucial roles are played by the sparse factorization of the matrix variable X of
the primal problem (1) and the matrix variable Y of the dual problem (2). To discuss this sparse
factorization, we introduce a few concepts. First, we define the aggregate sparsity pattern of the
input data matrices Ap (p = 0, 1, . . . , m) of SDPs (1) and (2). Assume V is the set {1, 2, . . . , n} of
row/column indices of an n× n symmetric matrix. The aggregate sparsity pattern E of the input
data matrices Ap (p = 0, 1, . . . , m) is the set defined as

E = {(i, j) ∈ V × V : i 6= j, [Ap]ij 6= 0, ∃p ∈ {0, 1, 2, . . . ,m}},

where [Ap]ij denotes the (i, j)th element of matrix Ap. Here, if V is assumed to be a set of vertices
and E is assumed to be a set of edges, then (V, E) describes a single graph. Next we discuss the
extended sparsity pattern. The extended sparsity pattern F is a superset of the aggregate sparsity
pattern E such that the graph (V, F ) derived from V and F is a chordal graph. The definition and
properties of chordal graphs are described in detail in the paper [13]. The primal-dual interior-point
method described in this section uses this extended sparsity pattern to increase the computational
efficiency. Accordingly, the extended sparsity pattern F should ideally be as sparse as possible.
The construction of an extended sparsity pattern of this type is described in detail in the paper
[12]. At an iteration point X ∈ Sn

++ of the primal-dual interior-point method, the parts that are
not included in the extended sparsity pattern F – i.e., {Xij : (i, j) /∈ F} are totally unrelated to
the objective function A0 •X of the primal problem (1) of the SDP or to the linear constraints
Ap •X = bp (p = 1, 2, . . . , m). In other words, these elements only affect the positive definiteness
condition X ∈ Sn

++. Therefore, if a positive definite matrix X̂ can be obtained by adding suitable
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values to the parts {Xij : (i, j) /∈ F} that are not included in the extended sparsity pattern F , then
this matrix X̂ can be used as the iteration point. This process of arriving at a positive definite
matrix by determining suitable values is called (positive definite) matrix completion. According to
matrix completion theory, when (V, F ) is a chordal graph, the matrix X̂ that has been subjected to
positive definite matrix completion in the way to maximize its determinant value can be factorized
as X̂ = M−T M−1 [12]. Here M is a sparse matrix that only has nonzero elements in parts of
the extended sparsity pattern F , and forms a matrix in which a suitable permutation is made to
the rows and columns of a lower triangular matrix. Furthermore, the matrix variable Y can be
factorized as Y = NNT . Here N is a sparse matrix that only has nonzero elements in parts of
the extended sparsity pattern F , and forms a matrix in which a suitable permutation is made to
the rows and columns of a lower triangular matrix. In the primal-dual interior-point method that
uses matrix completion theory as proposed in the paper [22], the computations at each step of
Algorithm 2.1 are performed using this sparse factorization as much as possible. In particular,
the sparse matrices M and N are stored instead of the conventional dense matrices X and Y −1,
and this sparsity is exploited when implementing the primal-dual interior-point method. Note also
that both M−1 and N−1 become dense in general.

For this paper we fully updated SDPA-C software package which incorporates new matrix
completion techniques based on SDPA 6.0 [30], which is the latest version of SDPA. Table 1 shows
numerical results obtained when solving two SDPs with SDPA 6.0 and with SDPA-C. Problem A
and B are SDP relaxations of maximum cut problems and maximum clique problems, respectively
which are described in section 4. The size of problem A is n = 1000,m = 1000, and the size of
problem B is n = 1000,m = 1891.

Table 1: The relative practical benefits of SDPA and SDPA-C

Problem A Problem B
SDPA SDPA-C SDPA SDPA-C

Computation of B 2.2s 20.3s 82.0s 662.8s
Cholesky factorization of B 3.5s 3.7s 25.3s 34.1s
Computation of d̃X 51.7s 9.2s 69.4s 32.6s
Dense matrix computation 96.1s 1.1s 125.7s 2.6s
Total computation time 157s 34s 308s 733s
Storage of B 8MB 8MB 27MB 27MB
Storage of n× n matrix 237MB 4MB 237MB 8MB
Total memory usage 258MB 14MB 279MB 39MB

To solve problem A, the SDPA software needed 15 iterations of the primal-dual interior-point
method and the SDPA-C software needed 16. For problem B, SDPA needed 20 iterations and
SDPA-C needed 27. The reason why SDPA-C needed more iterations is that SDPA is a Mehrotra-
type predictor-corrector primal-dual interior-point method, whereas SDPA-C is a simpler path-
following primal-dual interior-point method. In SDPA-C the dense matrices X and Y −1 are not
stored directly, but instead the sparse factorizations M−T M−1 and N−T N−1 are used. Conse-
quently, less time is needed for the computation of d̃X and the computations involving dense n×n
matrices. Furthermore, there is no need to store any n×n dense matrices, so the memory require-
ments are correspondingly much lower than those of SDPA. However, more computation time is
needed to evaluate each element of the coefficient matrix B ∈ Sm

++ of the Schur complement equa-
tion system Bdz = s. This is because the matrices X and Y −1 are not stored directly, making it
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impossible for SDPA-C to use computational methods that exploit the sparsity of the input data
matrices Ap (p = 1, 2, . . . , m) used in SDPA [11]. Similar computations are used for the Cholesky
factorization of B, so compared with conventional SDPA the computation time per iteration and
the memory requirements are unchanged. Consequently there are some cases (e.g., problem A)
where SDPA-C achieves substantial reductions in computation times and memory requirements
compared with SDPA, while there are other cases (e.g., problem B) where although the memory
requirements are substantially lower, the overall computation time is larger. In general to solve a
sparse SDP with large n, SDPA-C needs much less memory than SDPA. On the other hand, the
computation time of SDPA-C also includes the increased amount of computation needed to obtain
the value of each element of B ∈ Sm

++, so the benefits of matrix completion can sometimes be
marginal or even non-existent depending on the structure of the problem. In SDPs with a large
m, most of the overall computation times and memory requirements are taken up by the Cholesky
factorization of B ∈ Sm

++, so in such cases the use of matrix completion has little effect.

2.3 The parallel computation of primal-dual interior-point methods

The paper [31] proposes the SDPARA software which is based on SDPA and which solves SDPs
by executing the primal-dual interior-point method on parallel CPUs (PC clusters). In SDPARA,
two parts – the computation of the value of each element of the coefficient matrix B ∈ Sm

++ of
the Schur complement equation system Bdz = s at step 1b of Algorithm 2.1 and the Cholesky
factorization of B ∈ Sm

++ at step 1c – are performed by parallel processing.
We first describe how parallel processing can be used to obtain the values of each element

in B ∈ Sm
++. Each element of B is defined by equation (3), where each row can be computed

independently. Consequently, it can be processed in parallel by allocating each row to a different
CPU. To represent the distribution of processing to a total of u CPUs, the m indices {1, 2, · · · ,m}
are partitioned into Pi (i = 1, 2, · · · , u) groups. That is,

∪u
i=1Pi = {1, 2, · · · , m}, Pi ∩ Pj = ∅ if i 6= j.

Here, the ith CPU computes each element in the pth row of B (p ∈ Pi). The ith CPU only needs
enough memory to store the pth row of B (p ∈ Pi). The allocation of rows Pi (i = 1, 2, . . . , u) to
be processed by each CPU should be done so as to balance the loads as evenly as possible and
reduce the amount of data transferred. In SDPARA the allocation is performed sequentially from
the top down, mainly for practical reasons. In other words,

Pi = {x ∈ {1, 2, · · · ,m} | x ≡ i (mod u)} (i = 1, 2, . . . , u). (4)

In general, since m (the size of B) is much larger than u (the number of CPUs), reasonably good
load balancing can still be achieved with this simple method [31].

Next, we discuss how the Cholesky factorization of the coefficient matrix B of the Schur com-
plement equation system Bdz = s can be performed in parallel. In SDPARA, this is done by
calling the parallel Cholesky factorization routine in the ScaLAPACK parallel numerical computa-
tion library [5]. In the Cholesky factorization of the matrix, the load distribution and the quantity
of data transferred are greatly affected by the way in which the matrix is partitioned. In ScaLA-
PACK’s parallel Cholesky factorization, the coefficient matrix B is partitioned by block-cyclic
partitioning and each block is allocated to and stored in each CPU.

We now present the results of numerical experiments in which the ordinary characteristics
of SDPARA are well expressed. Table 2 shows the numerical results obtained when two types
of SDPs were solved with SDPA6.0 and SDPARA. With SDPARA the parallel processing was
performed using 64 CPUs – the computation times and memory requirements are shown for one
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of these CPUs. In SDPARA, the time taken up by transmitting data in block-cyclic partitioned
format for the parallel Cholesky factorization of B ∈ Sm

++ performed one row at a time on each
CPU is included in the term “Computation of B”. Problem C is an SDP relaxation of maximum
clique problems which is described in section 4. The size of problem C is n = 300,m = 4375, while
problem B is the same as the problem used in the numerical experiment of Table 1, with n = 1000
and m = 1891.

Table 2: Numerical comparison between SDPA and SDPARA

Problem C Problem B
SDPA SDPARA SDPA SDPARA

Computation of B 126.6s 6.5s 82.0s 7.7s
Cholesky factorization of B 253.0s 15.1s 25.3s 2.9s
Computation of d̃X 2.0s 2.0s 69.4s 69.0s
Dense matrix computation 5.0s 4.9s 125.7s 126.1s
Total computation time 395s 36s 308s 221s
Storage of B 146MB 5MB 27MB 1MB
Storage of n× n matrix 21MB 21MB 237MB 237MB
Total memory usage 179MB 58MB 279MB 265MB

As Table 2 shows, the time taken for the computation of B and the Cholesky factorization of
B is greatly reduced. (The number of iterations in the primal-dial interior-point method is the
same for each problem in SDPA and SDPARA.) Also, since B ∈ Sm

++ is stored by partitioning it
between the CPUs, the amount of memory needed to store B at each CPU is greatly reduced. On
the other hand, there is no change in the computation times associated with the n×n dense matrix
computation such as the computation of d̃X. Also, the amount of memory needed to store the
n× n matrix on each CPU is the same as in SDPA. In SDPARA, MPI is used for communication
between the CPUs. Since additional time and memory are consumed when MPI is started up, it
causes the overall computation times and memory requirements to increase slightly. In an SDP
where m is large and n is small, as in problem C, it becomes possible to process the parts relating to
the Schur complement equation system Bdz = s – which would otherwise require a large amount
of time and memory – very efficiently by employing parallel processing, and great reductions can
also be made to the overall computation times and memory requirements. On the other hand, in a
problem where n is large, as in problem B, large amounts of time and memory are consumed in the
parts where the n×n dense matrix is handled. Since these parts are not performed in parallel, it is
not possible to greatly reduce the overall computation times or memory requirements. Generally
speaking, SDPARA can efficiently solve SDPs with large m where time is taken up by the Cholesky
factorization of B ∈ Sm

++ and dense SDPs where a large amount of time is needed to compute each
element of B. But in an SDP with large n, the large amounts of computation time and memory
taken up in handling the n× n dense matrix make it difficult for SDPARA to reach a solution in
the same way as SDPA.

3 The parallel computation of primal-dual interior-point methods
using matrix completion

In this section we propose the SDPARA-C software package, which is based on SDPA-C as de-
scribed in section 2.2 and which solves SDP problems by executing the primal-dual interior-point
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method on parallel CPUs (PC clusters). The parallel computation of B ∈ Sm
++ is discussed in

section 3.1, and the parallel computation of d̃X is discussed in section 3.2. After that, section 3.3
summarizes the characteristics of SDPARA-C.

3.1 Computation of the coefficient matrix

In the paper [22], three methods are proposed for computing the coefficient matrix B ∈ Sm
++ of the

Schur complement equation system Bdz = s. We chose to develop our improved parallel method
based on the method discussed in section 5.2 of the paper [22]. Each element of B ∈ Sm

++ and
s ∈ Rm computed in the following way:

Bpq :=
n∑

k=1

(M−T M−1ek)T Aq(N−T N−1Uk[Ap])

+
n∑

k=1

(N−T N−1ek)T Aq(M−T M−1Uk[Ap]) (p, q = 1, 2, . . . , m),

sp := bp +
n∑

k=1

(M−T M−1ek)T R(N−T N−1Uk[Ap])

+
n∑

k=1

(N−T N−1ek)T R(M−T M−1Uk[Ap])

−
n∑

k=1

2µeT
k N−T N−1Uk[Ap] (p = 1, 2, . . . ,m).





(5)

The diagonal part of matrix Ap is denoted by T , and the upper triangular part excluding the
diagonal is denoted by U . In equation (5), Uk[Ap] represents the kth column of the upper triangular
matrix 1

2T + U , and ek ∈ Rn denotes a vector in which the kth element is 1 and all the other
elements are 0. This algorithm differs from the method proposed in section 5.2 of the paper [22] in
two respects. One is that the computations are performed using only the upper triangular matrix
part of matrix Ap. When Uk[Ap] is a zero vector, there is no need to perform computations
involving its index k. Comparing the conventional method and the method of equation (5), it is
impossible to generalize which has fewer indices k to be computed. The other difference is that
whereas X̂ is subjected to a clique sparse factorization M−T DM−1 in section 5.2 of the paper
[22], we implemented the sparse factorization M−T M−1. Because the computation costs are
almost same and the sparse factorization M−T M−1 is implemented more easily than the clique
sparse factorization M−T DM−1.

Here, equation (5) can be used to compute B ∈ Sm
++ independently for each row in the same

way as in the discussion of SDPARA in section 2.3. Therefore, in SDPARA-C it is possible to
allocate the computation of B ∈ Sm

++ to each CPU one row at a time. This allocation is performed
in the same way as in equation (4) of section 2.3. However, when using equation (5) to perform the
computations, the number of nonzero column vectors in Uk[Ap] strongly affects the computational
efficiency. Normally, since the number of nonzero vectors in Uk[Ap] is not fixed, it is possible that
large variations may occur in the computation time on each CPU when the allocation to each
CPU is performed as described above. For example, when there is just one identity matrix in the
constraint matrices, this matrix may be regarded as a sparse matrix but equation (5) still has to
be computed for every value of index k from 1 to n. To avoid such circumstances, it is better
to process rows that are likely to involve lengthy computation and disrupt the load balance in
parallel not by a single CPU but by multiple CPUs. The set of indices of such rows is defined as
Q ⊂ {1, 2, . . . , m}. The allocation Kp

i is set for every p ∈ Q and every i = 1, 2, · · · , u as follows:

∪u
i=1K

p
i = {k ∈ {1, 2, . . . , n} | Uk[Ap] 6= 0}, Kp

i ∩Kp
j = ∅ if i 6= j
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At the ith CPU, the following computation is only performed for indices k contained in Kp
i in

equation (5), with the results stored in a working vector w ∈ Rm and a scalar g ∈ R.

wq :=
∑

k∈Kp
i

(M−T M−1ek)T Aq(N−T N−1Uk[Ap])

+
∑

k∈Kp
i

(N−T N−1ek)T Aq(M−T M−1Uk[Ap]) (q = 1, 2, . . . , m),

g :=
∑

k∈Kp
i

(M−T M−1ek)T R(N−T N−1Uk[Ap])

+
∑

k∈Kp
i

(N−T N−1ek)T R(M−T M−1Uk[Ap])

−
∑

k∈Kp
i

2µeT
k N−T N−1Uk[Ap].

After that, the values of w and g computed at each CPU are sent to the jth CPU that was
originally scheduled to process the vector of the pth row of B ∈ Sm

++ (p ∈ Pj), where they are
added together. Therefore, the pth row of B ∈ Sm

++ is stored at the jth CPU (p ∈ Pj). Thus,
the algorithm for computing the coefficient matrix B ∈ Sm

++ of the Schur complement equation
system and the right hand side vector s ∈ Rm at the ith CPU is as follows:

Computation of B and s at the ith CPU

Set B := O, s := b
for p ∈ Q

Set w = 0 and g = 0
for k ∈ Kp

i

Compute v1 := M−T M−1ek and v2 := N−T N−1Uk[Ap]
Compute v3 := N−T N−1ek and v4 := M−T M−1Uk[Ap]
for q = 1, 2, . . . , m

Compute vT
1 Aqv2 + vT

3 Aqv4 and add to wq

end(for)
Compute vT

1 Rv2 + vT
3 Rv4 − 2µeT

k v2 and add to g
end(for)
Send w and g to the jth CPU (p ∈ Pj) and add them together

end(for)
for p ∈ Pi −Q

for k = 1, 2, . . . , n where Uk[Ap] 6= 0
Compute v1 := M−T M−1ek and v2 := N−T N−1Uk[Ap]
Compute v3 := N−T N−1ek and v4 := M−T M−1Uk[Ap]
for q = 1, 2, . . . , m

Compute vT
1 Aqv2 + vT

3 Aqv4 and add to Bpq

end(for)
Compute vT

1 Rv2 + vT
3 Rv4 − 2µeT

k v2 and add to sp

end(for)
end(for)

As a result of this computation, the Schur complement equation system B ∈ Sm
++ is partitioned

and stored row by row on each CPU. After that, B ∈ Sm
++ is sent to each CPU in block-cyclic

partitioned form, and the Cholesky factorization is then performed in parallel.
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3.2 Computation of the search direction

Here we discuss the parallel computation of the matrix variable d̃X at step 1d of Algorithm 2.1.
In the paper [22] it was proposed that d̃X should be computed in separate columns as follows:

[d̃X]∗k := µN−T N−1ek − [X]∗k −M−T M−1dY N−T N−1ek. (6)

Here [A]∗k denotes the kth column of A. It has been shown that if a nonlinear search is performed
here instead of the linear search performed at step 3 of Algorithm 2.1, then it is only necessary to
store the values of the extended sparsity pattern parts of d̃X. Since [d̃X]∗k and [d̃X]∗k′ (k 6= k′)
can be computed independently using the formula (6), it should be possible to split the matrix
into columns and process these columns in parallel on multiple CPUs. The computational load
associated with computing a single column is more or less constant. Therefore, by uniformly
distributing columns to multiple CPUs, the computation can be performed in parallel with a
uniformly balanced load.

The computation of columns of d̃X at the ith CPU is performed as shown below. Here, the
CPU allocations Ki (i = 1, 2, · · · , u) are determined as follows:

Ki = {x ∈ {1, 2, · · · , n} | (i− 1)
[

n
u

]
< x ≤ i[nu ]} (i = 1, 2, . . . , u− 1),

Ku = {x ∈ {1, 2, · · · , n} | (u− 1)
[

n
u

]
< x}.

and the ith CPU computes the pth column of d̃X (p ∈ Ki).

Computation of d̃X at the ith CPU

Set d̃X := −X
for k ∈ Ki

Compute v := µN−T N−1ek −M−T M−1dZN−T N−1ek

Add v to d̃X∗k
end(for)
Transmit the column vector computed at each CPU to all the other CPUs

At the end of this algorithm, the column vector computed at each CPU is sent to all the other
CPUs. At this time, since only the extended sparsity pattern parts of d̃X are needed, these are
the only parts that have to be sent to the other CPUs. Therefore, this part of the data transfer
can be performed at high speed.

3.3 Characteristics

Table 3 shows the computation time of each part and the memory requirements when problem
B used in the numerical experiments of Tables 1 and 2 (n = 1000,m = 1891) is solved with
SDPARA-C. In this experiment, the parallel processing was performed using 64 CPUs. To facilitate
comparison, the results obtained with SDPA 6.0, SDPA-C and SDPARA as shown in Tables 1 and
2 are also reproduced here. In the results obtained with SDPARA and SDPARA-C, the time taken
up by transmitting data in block-cyclic partitioned format for the parallel Cholesky factorization
of the coefficient matrix B ∈ Sm

++ of the Schur complement equation system performed one row
at a time on each CPU is included in the term “Computation of B”. Also, the time taken to send
the results of computing d̃X obtained at each CPU to all the other CPUs is included in the term
“Computation of d̃X”.
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Table 3: Numerical comparison between SDPA, SDPA-C, SDPARA and SDPARA-C

Problem B
SDPA SDPA-C SDPARA SDPARA-C

Computation of B 82.0s 662.8s 7.7s 10.5s
Cholesky factorization of B 25.3s 34.1s 2.9s 4.0s
Computation of d̃X 69.4s 32.6s 69.0s 2.4s
Dense matrix computation 125.7s 2.6s 126.1s 2.3s
Total computation time 308s 733s 221s 26s
Storage of B 27MB 27MB 1MB 1MB
Storage of n× n matrix 237MB 8MB 237MB 8MB
Total memory usage 279MB 39MB 265MB 41MB

The number of iterations of the primal-dual interior-point method was 20 when the problem was
solved by SDPA and SDPARA, and 27 when solved by SDPA-C and SDPARA-C. The reason why
more iterations were required by the primal-dual interior-point methods using matrix completion is
that these are simple path-following primal-dual interior-point methods. Section 2.1 mentions the
four parts that take up most of the computation time and the two parts that take up most of the
memory requirements when an SDP is solved by a primal-dual interior point method. In Table 3,
we are able to confirm that the problem is processed efficiently in all these parts by SDPARA-
C. SDPARA-C uses MPI for communication between CPUs in the same way as SDPARA. Since
additional time and memory are consumed when MPI is started up and executed, it causes the
overall computation times and memory requirements to increase. This is why the overall amount of
memory used by SDPARA-C is greater than that of SDPA-C. As Table 3 shows, the computation
times involved in the “Computation of B” of SDPARA-C does not necessarily improve when it
is compared to that of SDPARA. The next section shows the results of numerical experiments in
which a variety of problems were solved by SDPARA-C.

4 Numerical experiments

This section presents the results of numerical experiments. In section 4.1, 4.2 and 4.3, the numerical
experiments performed on the Presto III PC cluster at the Matsuoka Laboratory in the Tokyo
Institute of Technology. Each node of this cluster consists of an Athlon 1900+ (1.6 GHz) CPU
with 768 MB of memory. The nodes are connected together by a Myrinet 2000 network, which is
faster and performs better than Gigabit Ethernet. In section 4.4 and 4.5, the numerical experiments
performed on the SDPA PC cluster at the Fujisawa Laboratory in the Tokyo Denki University.
Each node of this cluster consists of a Dual Athlon MP 2400+ (2GHz) CPU with 1GB of memory.
The nodes are connected together by 1000BASE-T.

In these experiments we evaluated three types of software. One was the SDPARA-C software
proposed in this paper. The second was SDPARA [31]. The third was PDSDP ver.4.6, as used
in the numerical experiments of the paper [1], which employs the dual interior-point method on
parallel CPUs. SDPARA-C and SDPARA used ScaLAPACK ver.1.7 and ATLAS ver.3.4.1. And
the block size used with ScaLAPACK is 40 and other options are default settings. In all the
experiments apart from those described in section 4.5, the starting point of the interior-point
method was chosen to be X = Y = 100I, z = 0. As the termination conditions, the algorithms
were run until the relative dual gap in SDPARA-C and SDPARA was 10−7 or less.
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The SDPs used in the experiments were:

• SDP relaxations of randomly generated maximum cut problems.

• SDP relaxations of randomly generated maximum clique problems.

• Randomly generated norm minimization problems.

• Some benchmark problems from SDPLIB [7].

• Some benchmark problems from the 7th DIMACS implementation challenge.

The SDP relaxations of maximum cut problems and norm minimization problems were the same
as the problems used in the experiments of the paper [22].

SDP relaxations of maximum cut problems: Assume G = (V, E) is an undirected graph,
where V = {1, 2, . . . , n} is a set of vertices and E ⊂ {(i, j) : i, j ∈ V, i < j} is a set of edges. Also,
assume that weights Cij = Cji ((i, j) ∈ E) are also given. An SDP relaxation of a maximum cut
problem is then given by

minimize −A0 •X
subject to Eii •X = 1/4 (i = 1, 2, . . . , n),

X ∈ Sn
+,

(7)

where Eii is an n×n matrix where the element at (i, i) is 1 and all the other elements are 0. Also,
we define A0 = diag(Ce)−C.

SDP relaxations of maximum clique problems: Assume G = (V, E) is an undirected graph
as in the maximum cut problem. An SDP relaxation of the maximum clique SDP problem is then
given by

minimize −E •X
subject to Eij •X = 0 ((i, j) /∈ E),

I •X = 1, X ∈ Sn
+,

(8)

where E is an n × n matrix where all the elements are 1, and Eij is an n × n matrix where the
(i, j)th and (j, i)th elements are 1 and all the other elements are 0. Since the aggregate sparsity
pattern and extended sparsity pattern are dense patterns in this formulation, the problem is solved
after performing the transformation proposed in section 6 of the paper [12].

Norm minimization problem: Assume F i ∈ Rq×r (i = 1, 2, . . . , p). The norm minimization
problem is then defined as follows:

minimize

∥∥∥∥∥F 0 +
p∑

i=1

F iyi

∥∥∥∥∥ subject to yi ∈ R (i = 1, 2, . . . , p).

where ‖G‖ is the spectral norm of G; i.e., the square root of the maximum eigenvector of GT G.
This problem can be transformed into the following SDP:

maximize −zp+1

subject to
p∑

i=1

(
O F T

i

F i O

)
zi +

(
I O
O I

)
zp+1 +

(
O F T

0

F 0 O

)
= Y ,

Y ∈ Sq+r
+ .

(9)
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In section 4.1 we verify the scalability of parallel computations in SDPARA-C, SDPARA and
PDSDP. In section 4.2 we investigate how the sparsity of the extended sparsity pattern of an SDP
affects the efficiency of the three software packages. In section 4.3 we investigate how large SDPs
can be solved. And finally in sections 4.4 and 4.5 we select a number of SDPs from the SDPLIB
[7] problems and DIMACS challenge problems and solve them using SDPARA-C.

4.1 Scalability

In this section we discuss the results of measuring the computation times required to solve a
number of SDPs with clusters of 1, 2, 4, 8, 16, 32 and 64 PCs. The problems that were solved are
listed in Table 4. In this table, n and m respectively represent the size of matrix variables X and
Y and the number of linear constraints in the primal problem (1).

3

Table 4: Problems solved in the experiments. See Figures 1, 2, 3 and Table 5
Problem n m

Cut(10 ∗ 100) 1000 1000 10× 100 lattice graph maximum cut (7)
Cut(10 ∗ 500) 5000 5000 10× 500 lattice graph maximum cut (7)
Clique(10 ∗ 100) 1000 1891 10× 100 lattice graph maximum clique (8)
Clique(10 ∗ 200) 2000 3791 10× 200 lattice graph maximum clique (8)
Norm(10 ∗ 990) 1000 11 Norm minimization of ten 10× 990 matrices (9)
Norm(5 ∗ 995) 1000 11 Norm minimization of ten 5× 995 matrices (9)
qpG11 1600 800 SDPLIB[7] problem
maxG51 1000 1000 SDPLIB[7] problem
control10 150 1326 SDPLIB[7] problem
theta6 300 4375 SDPLIB[7] problem

In Figure 1, the horizontal axis shows the number of CPUs and the vertical axis shows the
logarithmic computation time. From the numerical results it can be confirmed that parallel com-
putation performed with SDPARA-C has a very high level of scalability. Although the scalability
becomes worse as the number of CPUs increases and the computation time is in the region of a
few tens of seconds, this is due to factors such as disruption of the load balance of each CPU and
an increase in the proportion of time taken up by data transfers.

Next, we performed similar numerical experiments with SDPARA. The results of these exper-
iments are shown in Figure 2. In SDPARA, the “Cut(10 ∗ 500)” and “Clique(10 ∗ 200)” problems
could not be solved because there was insufficient memory. As mentioned in section 2.3, in SD-
PARA the computation of the coefficient matrix B ∈ Sm

++ of the Schur complement equation
system of size m and the Cholesky factorization thereof are performed in parallel. Therefore, the
effect of parallel processing is very large for the “control10” and “theta6” problems where m is
large compared to n. On the other hand, in the other problems where m is at most only twice
as large as n, parallel processing had almost no effect whatsoever. Compared with the numerical
results of SDPARA-C shown in Figure 1, SDPARA produced solutions faster than SDPARA-C for
the two SDPs with small n (“control10” and “theta6”). In the “Clique(10 ∗ 100)” problem, the
computation time of SDPARA was smaller with fewer CPUs, but with a large number of CPUs
the computation time was lower in SDPARA-C. This is because parallel processing is applied to
more parts in SDPARA-C, so it is more able to reap the benefits of parallel processing. For the
other problems, SDPARA-C performed better.
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Figure 1: Scalability of SDPARA-C applied to problems listed in Table 4
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Figure 2: Scalability of SDPARA applied to problems listed in Table 4

Next, we performed similar numerical experiments with PDSDP [1]. The results of these
experiments are shown in Figure 3. PDSDP is a software package that employs the dual interior-
point method on parallel CPUs. However, according to the numerical results shown in Figure 3,
it appears that this algorithm is not particularly scalable for some problems. Its performance
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is similar to that of SDPARA for SDPs such as “control10” and “theta6” where m is large and
parallel computation works effectively. We compare these numerical results with those obtained for
SDPARA-C as shown in Figure 1. The dual interior-point method employed in PDSDP uses the
sparsity of the SDP to perform the computation in the same way as the primal-dual interior-point
method that uses matrix completion as employed by SDPARA-C. Consequently, when solved on
a single CPU, the computation time of PDSDP is often found to be close to the results obtained
for the computation time of SDPARA-C. However, when using 64 CPUs, the results show that
SDPARA-C is better for 9 out of the 10 problems (i.e., all of them except “control10”).
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Figure 3: Scalability of PDSDP applied to problems listed in Table 4

Based on these results, we have been able to verify that SDPARA-C has better scalability than
SDPARA and PDSDP.

In addition to Figures 1, 2 and 3, Table 5 shows the parallel efficiency of SDPARA-C, SDPARA
and PDSDP applied to each problem between the cluster of 1 and 8 CPUs and the shortest
computation time of SDPARA-C, SDPARA and PDSDP applied to each problem over the cluster
of 1, 2, 4, 8, 16, 32 and 64 CPUs. The parallel efficiency is defined by

the cpu time in a single machine
time on 8cpus× 8

.

The column “parallel eff.” denotes the parallel efficiency and the column “#cpus” denotes the
number of CPUs at which the shortest computation time was attained, and “M” signifies that the
problem could not be solved due to insufficient memory.

4.2 The sparsity of SDPs

In this section we examine how SDPARA-C is affected by the sparsity of a given SDP. All the
problems were solved by 64 CPUs. We produced SDP relaxations of maximum cut problems (7)
in which the sparsity ρ of the extended sparsity pattern was varied while the size of the SDP was
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Table 5: Parallel efficiency and shortest computation times required for SDPARA-C, SDPARA
and PDSDP to solve problems listed in Table 4

SDPARA-C SDPARA PDSDP
parallel # time parallel # time parallel # time

Problem eff. (%) cpus (s) eff. (%) cpus (s) eff. (%) cpus (s)
Cut(10 ∗ 100) 44.9 32 7.3 12.5 16 160.1 13.0 4 28.1
Cut(10 ∗ 500) 90.1 64 70.7 M 24.4 16 1559.6
Clique(10 ∗ 100) 78.8 64 26.4 14.7 64 224.3 14.7 16 618.6
Clique(10 ∗ 200) 73.9 64 95.6 M 13.9 16 4718.0
Norm(10 ∗ 990) 58.1 32 13.4 39.0 32 407.2 41.6 16 99.8
Norm(5 ∗ 995) 46.4 16 7.1 29.6 32 303.3 44.5 32 76.1
qpG11 58.9 32 9.9 12.3 8 650.4 12.9 4 40.9
maxG51 60.4 32 56.9 12.4 16 174.6 12.5 4 79.4
control10 84.5 64 1034.6 71.2 64 22.0 56.1 64 207.0
theta6 82.3 64 101.9 77.3 64 39.1 24.0 16 250.5

fixed at n = m = 1000. Figure 4 shows the relationship between the sparsity of the SDP and
the computation time when these problems were solved by SDPARA-C, SDPARA and PDSDP,
and Figure 5 shows the relationship between the sparsity of the SDP and the amount of memory
needed to solve it. In Figures. 4 and 5, the horizontal axis is a logarithmic representation of the
sparsity ρ(1 ≤ ρ ≤ 1000), and the vertical axis is a logarithmic representation of the computation
time (or memory usage).
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Figure 4: Sparsity and computation time required for SDPARA-C, SDPARA and PDSDP to solve
SDP relaxations of maximum cut problems (64 CPUs)
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Figure 5: Sparsity and memory requirements for SDP relaxations of maximum cut problems by
SDPARA-C, SDPARA and PDSDP (64 CPUs)

The results in Figure 4 show that as ρ increases, the computation time of SDPARA-C and
PDSDP also increases. On the other hand, since SDPARA is implemented without much consid-
eration of sparsity of SDPs, the computation time is almost completely independent of the sparsity
of an SDP to be solved. The results in Figure 5 show that the memory requirements per processor
of SDPARA-C depend on the sparsity of the SDP, whereas the memory requirements per processor
of SDPARA and PDSDP remain more or less fixed.

By comparing the results obtained with these three software packages, it can be seen that
SDPARA-C has the shortest computation times and smallest memory requirements when the
SDP to be solved is sparse. On the other hand, when the SDP to be solved has little sparsity, the
shortest computation times were achieved with SDPARA and the smallest memory requirements
were obtained with PDSDP. The reason why SDPARA-C requires more memory than SDPARA
when the SDP has less sparsity is because it makes duplicate copies of variables to increase the
computational efficiency. PDSDP is characterized in that its memory requirements are very low
regardless of how sparse the SDP to be solved is.

4.3 Large-size SDPs

In this section we investigate how large an SDP’s matrix variable can be made before it becomes
impossible for SDPARA-C to solve the problem. In the following numerical experiments, parallel
computation is performed using all 64 CPUs. The SDPs used in the numerical experiments were the
SDP relaxation of a maximum cut lattice graph problem (7), the SDP relaxation of a maximum
clique lattice graph problem (8), and a norm minimization problem (9). The size of the SDP
relaxation of the maximum cut problem from a k1 × k2 lattice is n = m = k1k2. As an indicator
of the sparsity of an SDP, we consider the average number ρ of nonzero elements per row of a
sparse matrix having nonzero elements in the extended sparsity pattern parts. In this problem,
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ρ ≤ 2min(k1, k2)+1. Therefore, by fixing k1 at 10 and varying k2 from 1000 to 4000, it is possible
to produce SDPs with larger matrix variables (i.e., larger n) without increasing the sparsity ρ.
Similarly, the size and sparsity of SDP relaxation of maximum clique problems with a k1 × k2

lattice are respectively: n = k1k2, m = 2k1k2 − k1 − k2 + 1, ρ ≤ 2min(k1, k2) + 2. Therefore, by
fixing k1 at 10 and varying k2 from 500 to 2000, it is possible to produce SDPs with larger matrix
variables without increasing the sparsity. Also, the size of a norm minimization problem derived
from a matrix of size k1 × k2 is n = k1 + k2. When the number of matrices is fixed at 10, m = 11
and ρ ≈ 2min(k1, k2) + 1. Therefore, by fixing k1 at 10 and varying k2 from 9990 to 39990, it is
possible to produce SDPs with larger matrix variables without increasing the sparsity; thus ρ ≈ 21
for all cases in Table 6.

Table 6: Numerical results on SDPARA-C applied to large-size SDPs (64 CPUs)

time memory
Problem n m (s) (MB)
Cut(10 * 1000) 10000 10000 274.3 126
Cut(10 * 2000) 20000 20000 1328.2 276
Cut(10 * 4000) 40000 40000 7462.0 720
Clique(10 * 500) 5000 9491 639.5 119
Clique(10 * 1000) 10000 18991 3033.2 259
Clique(10 * 2000) 20000 37991 15329.0 669
Norm(10 * 9990) 10000 11 409.5 164
Norm(10 * 19990) 20000 11 1800.9 304
Norm(10 * 39990) 40000 11 7706.0 583

Table 6 shows the computation times and memory requirements per processor needed when
SDPARA-C is used to solve SDP relaxations of maximum cut problems for large lattice graphs,
SDP relaxations of maximum clique problems for large lattice graphs and norm minimization prob-
lems for large matrices. As one would expect, the computation times and memory requirements
increase as n gets larger. When n was 2000 or more, SDPARA was unable to solve any of these
three types of problem due to a lack of memory. Also, PDSDP had insufficient memory to solve
SDP relaxations of maximum cut problems with n ≥ 10000 or SDP relaxations of maximum clique
problems and norm minimization problems with n ≥ 5000. However, SDPARA-C was able to solve
SDP relaxations of maximum cut problems with n = 40000, SDP relaxations of maximum clique
problems with n = 20000, and norm minimization problems with n = 40000. Thus in the case of
very sparse SDPs as solved in this section, solving with SDPARA-C allows an optimal solution to
be obtained to very large-scale SDPs.

4.4 The SDPLIB problems

We performed numerical experiments with a number of problems selected from SDPLIB [7], which
is a set of standard benchmark SDP problems. All the problems were processed in parallel on 8,
16 and 32 CPUs. However, in the “equalG11”, “theta6” and “equalG51” problems, the constraint
matrices include a matrix in which all the elements are 1, so these problems were solved after
making the transformation proposed in section 6 of the paper [12]. The values of n and m in
Table 7 indicate the size of the SDP in the same way as in section 4.1. Also, ρ is an index
representing the sparsity of the SDP as in section 4.3. Cases in which the problem could not be
solved due to insufficient memory are indicated as “M”, and cases in which no optimal solution
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had been found after 200 iterations are indicated as “I”.

Table 7: Numerical results on SDPARA-C, SDPARA and PDSDP applied to SDPLIB problems

SDPARA-C SDPARA PDSDP
# time mem # time mem # time mem

Problem n, m, ρ cpus (s) (MB) cpus (s) (MB) cpus (s) (MB)

thetaG11 801,2401,23 32 95.6 13 32 184.8 159 I
maxG32 2000,2000,32 16 115.5 26 M 8 227.6 58
equalG11 801,801,35 32 252.0 115 16 133.1 161 16 258.7 33
qpG51 2000,1000,67 32 189.8 83 8 1210.9 955 8 490.5 46
control11 165,1596,74 32 2902.5 28 32 124.0 14 32 475.7 20
maxG51 1000,1000,134 16 95.2 79 8 173.1 243 8 106.1 18
thetaG51 1001,6910,137 32 1870.1 113 M I
theta6 300,4375,271 32 347.3 29 32 188.3 36 8 495.8 37
equalG51 1001,1001,534 32 683.3 178 16 241.2 251 16 624.9 51

Table 7 shows the computation times and memory requirements per processor when the short-
est computation times are achieved over clusters of 8, 16 and 32 CPUs. We have verified that
SDPARA-C attains higher scalability compared to SDPARA and PDSDP. The SDPs shown in
Table 7 are listed in order of increasing sparsity ρ. In cases where the SDP to be solved is sparse
(i.e., the problems near the top of Table 7), SDPARA-C was able to reach solutions in the shortest
computation times and with the smallest memory requirements. In cases where the SDP to be
solved is not very sparse (i.e., the problems near the bottom of Table 7), the shortest computation
times tended to be achieved with SDPARA and the smallest memory requirements tended to be
achieved with PDSDP.

4.5 DIMACS

We performed numerical experiments with four problems selected from the 7th DIMACS challenge.
All the problems were processed in parallel on 8, 16 and 32 CPUs. Table 8 shows the computation
times and memory requirements per processor when the shortest computation times are achieved
over clusters of 8, 16 and 32 CPUs. Since these problems tend to have optimal solutions with large
values, we used the starting conditions X = Y = 107I, z = 0. From the results of these numerical
experiments as shown in Table 8, we were able to confirm that the smallest computation times
were achieved with SDPARA-C, and that the smallest memory requirements were obtained with
PDSDP, in cases where the SDP to be solved is large.

5 Conclusion

In this paper, by applying parallel processing techniques to the primal-dual interior-point method
using matrix completion theory as proposed in the paper [12, 22], we have developed the SDPARA-
C software package which runs on parallel CPUs (PC clusters). SDPARA-C is able to solve large-
scale SDPs (SDPs with sparse large-scale data matrices and a large number of linear constraints
in the primal problem (1)) while using less memory. In particular, we have reduced its memory
requirements and computation time by performing computations based on matrix completion
theory that exploit the sparsity of the problem without performing computations on dense matrices,
and by making use of parallel Cholesky factorization. By introducing parallel processing in the
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Table 8: Numerical results on SDPARA-C, SDPARA and PDSDP applied to DIMACS problems

SDPARA-C SDPARA PDSDP
# time mem # time mem # time mem

Problem n, m, ρ cpus (s) (MB) cpus (s) (MB) cpus (s) (MB)

torusg3-8 512,512,78 8 26.4 26 8 46.5 66 8 18.0 7
toruspm3-8-50 512,512,78 8 27.5 26 8 53.4 66 8 18.9 7
torusg3-15 3375,3375,212 32 826.7 439 M 8 1945.4 159
toruspm3-15-50 3375,3375,212 32 866.3 439 M 8 1744.9 159

parts where bottlenecks have occurred in conventional software packages, we have also succeeded
in making substantial reductions to the overall computation times.

We have conducted numerical experiments to compare the performance of SDPARA-C with
that of SDPARA [31] and PDSDP [1] in a variety of different problems. From the results of these
experiments, we have verified that SDPARA-C exhibits very high scalability. We have also found
that SDPARA-C can solve problems in much less time and with much less memory than other
software packages when the extended sparsity pattern is very sparse, and as a result we have
successfully solved large-scale problems in which the size of the matrix variable is of the order of
tens of thousands – an impossible task for conventional software packages.

As a topic for further study, it would be worthwhile allocating the parallel processing of the
coefficient matrix of the Schur complement equation system proposed in section 3.1 so that the
load balance of each CPU becomes more uniform (bearing in mind the need for an allocation that
can be achieved with a small communication overhead). Numerical experiments have confirmed
that that good results can be achieved even with the relatively simple method proposed in this
paper, but there is probably still room for improvement in this respect.

When solving huge scale SDPs, memory is likely to become a bottleneck. In SDPARA-C, the
coefficient matrix of the Schur complement equation system is partitioned between each CPU, but
the other matrices (including the input data matrix and the sparse factorizations of the matrix
variables in the primal and dual problems) are copied across to and stored on every CPU. This
memory bottleneck could be eliminated by partitioning each of the matrices copied in this way
and distributing the parts across the CPUs. However, since this would result in greater data
communication and synchronization overheads, it would probably result in larger computation
times. Therefore, further study is needed to evaluate the benefits and drawbacks of partitioning
the data in this way.

SDPARA-C has the property of being able to solve sparse SDPs efficiently, and SDPARA
has the property of being able to solve non-sparse SDPs efficiently. In other words, SDPARA-
C and SDPARA have a complementary relationship. This fact has been confirmed from the
numerical experiments of section 4.2 and section 4.4. The two algorithms used in SDPARA and
SDPARA-C could be combined into a single convenient software package by automatically deciding
which algorithm can solve a given SDP more efficiently, and then solving the problem with the
selected algorithm. To make this decision, it would be necessary to estimate the computation times
and memory requirements of each algorithm. However, estimating computation times in parallel
processing is not that easy to do.
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