
4 Parallel Primal-Dual
Interior-Point Methods
for SemiDefinite Programs

Makoto Yamashita†, Katsuki Fujisawa‡, Mituhiro Fukuda\, Masakazu
Kojima], and Kazuhide Nakata?

†Kanagawa University, ‡Tokyo Denki University, \]?Tokyo Institute of Tech-
nology

The Semidefinite Program (SDP) is a fundamental problem in mathemat-
ical programming. It covers a wide range of applications, such as combina-
torial optimization, control theory, polynomial optimization, and quantum
chemistry. Solving extremely large-scale SDPs which could not be solved be-
fore is a significant work to open up a new vista of future applications of
SDPs. Our two software packages SDPARA and SDPARA-C based on strong
parallel computation and efficient algorithms have a high potential to solve
large-scale SDPs and to accomplish the work. The SDPARA (SemiDefinite
Programming Algorithm paRAllel version) is designed for general large SDPs,
while the SDPARA-C (SDPARA with the positive definite matrix Comple-
tion) is appropriate for sparse large-scale SDPs arising from combinatorial
optimization. The first sections of this paper serves as a user guide of the
packages, and then some details on the primal-dual interior-point method
and the positive definite matrix completion clarify their sophisticated tech-
niques to enhance the benefits of parallel computation. Numerical results are
also provided to show their high performance.

4.1 INTRODUCTION

The semidefinite program (SDP) is a fundamental problem in mathematical
programming. It minimizes (or maximizes) a linear objective function in real
variables x1, x2, . . . , xm subject to a linear matrix inequality in these variables.
In this paper, we often use the term SDP to denote a pair of a primal SDP P

1



2 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

and its dual D.

SDP :





P : minimize
∑m

k=1 ckxk

subject to X =
∑m

k=1 F kxk − F 0,
X º O.

D : maximize F 0 • Y
subject to F k • Y = ck (k = 1, 2, . . . ,m),

Y º O.

The input data of the SDP are composed of real numbers ck (k = 1, . . . ,m)
and matrices F k ∈ Sn (k = 0, 1, . . . ,m), where Sn is the set of n×n symmetric
matrices. We use the notation X º O (X Â O) to indicate that X ∈ Sn

is a positive semidefinite matrix (a positive definite matrix, respectively).
The inner-product in Sn is defined by U • V =

∑n
i=1

∑n
j=1 UijVij . We call

(x, X, Y ) ∈ Rm × Sn × Sn a feasible solution when (x, X, Y ) satisfies all
constraints in P and D. When X and Y are positive definite in addition to
their feasibility, we call (x, X, Y ) an interior feasible solution.

An SDP is a substantial extension of a linear program, and covers a wide
range of applications in various fields such as combinatorial optimization [13,
21], quantum chemistry [11, 24], system and control theory [6], and polynomial
optimization [17, 19]. More applications can be found in the survey papers
on SDPs [29, 32, 34]. In 1994, Nesterov and Nemirovskii [26] proposed an
interior-point method that solves an SDP in polynomial time. Primal-dual
interior-point methods [1, 15, 18, 22, 27] are variants of the interior-point
method, which have shown their practical efficiency by computer software
packages such as SDPA [10, 35], SeDuMi [28], SDPT3 [31] and CSDP [4].
However, in recent applications to some SDPs arising from quantum chemistry
[11, 24] and polynomial optimization [17, 19], we often encounter extremely
large SDPs that no existing computer software package can solve on a single
processor due to its limits on both computation time and memory space.

Meanwhile, the field of parallel computation has achieved a surprisingly
rapid growth in the last decade. In particular, PC-cluster and grid technolo-
gies have certainly sustained the growth, and now provide enormous parallel
computation resources for various fields including mathematical programming.

Solving extremely large-scale SDPs which no one could solve before is a
significant work to open up a new vista of future applications of SDPs. Our
two software packages SDPARA and SDPARA-C based on strong parallel
computation and efficient algorithms have a high potential to solve large-scale
SDPs and to accomplish the work. The SDPARA (SemiDefinite Programming
Algorithm paRAllel version) [36] is designed for general large SDPs, while the
SDPARA-C (SDPARA with the positive definite matrix Completion) [25] is
appropriate for sparse large SDPs arising from combinatorial optimization.

When we consider large-scale SDPs, we need to take account of three fac-
tors: the size m of the primal vector variable x in P which corresponds to the
number of equality constraints in D, the size n of the primal matrix variable



INTRODUCTION 3

X (or the dual matrix variable Y ), and the sparsity of the data matrices
F k (k = 0, 1, 2, . . . , m). If the matrices F k (k = 0, 1, 2, . . . , m) are fully dense,
we have at least (m + 1)n(n + 1)/2 real numbers as input data for the SDP;
for example if m = n = 1, 000, this number gets larger than a half billion.
Therefore we can not expect to store and solve fully dense SDPs with both m
and n large. The most significant key to solve large-scale SDPs with sparse
data matrices is how to exploit their sparsity in parallel computation.

The SDPARA, which is regarded as a parallel version of the SDPA [35], is
designed to solve sparse SDPs with large m and not large n compared to m (for
example, m = 30, 000 and n = 1, 000). In each iteration of the primal-dual
interior-point method, the computation of a search direction (dx, dX, dY ) is
reduced to a system of linear equations Bdx = r called the Schur complement
equation. Here B denotes an m × m positive definite matrix whose elements
are computed from the data matrices F k (k = 1, 2, . . . ,m) together with the
current iterate matrix variables X and Y . Fujisawa, Kojima and Nakata
[9] proposed an efficient method for computing B when the data matrices
F k (k = 1, 2, . . . ,m) are sparse. This method is employed in the SDPA.
The matrix B is fully dense in general even when all the data matrices are
sparse. (There are some special cases where B becomes sparse. See, for
example, [33].) We usually employ the Cholesky factorization of B to solve
the Schur complement equation. For a fixed n, most of arithmetic operations
are required in the evaluation of the coefficient matrix B and its Cholesky
factorization. The SDPARA executes these two parts in parallel.

One serious difficulty in applying primal-dual interior-point method to
SDPs with large n lies in the fact that the n × n matrix variable Y of D is
fully dense in general even when all the data matrices F k (k = 0, 1, 2, . . . ,m)
are sparse. Note that the n × n matrix variable X of P, which is given by
X =

∑m
k=1 F kxk−F 0, inherits the sparsity of the data matrices. To overcome

this difficulty, Fukuda, Fujisawa, Kojima, Murota and Nakata [12, 23] incor-
porated the positive definite matrix completion technique into primal-dual
interior-point methods. Their key idea can be roughly summarized as “when
the aggregated sparsity pattern over the data matrices F k (k = 0, 1, 2, . . . ,m)
(or the sparsity of the variable matrix X of P) induces a sparse chordal graph
structure, we can choose values for the dense matrix variable Y of D such
that its inverse Y −1 enjoys the same sparsity as X”; hence we utilize Y −1

explicitly instead of storing and manipulating the dense matrix Y . It was
reported in [23] that this technique is very effective in saving the computation
time and the memory space used for SDPs with large n arising from SDP re-
laxations of combinatorial optimization problems on graphs. The SDPARA-C
[25], the other software package presented in this paper, is a combination of
the SDPARA and a parallel positive matrix completion technique, and aims
to solve sparse SDPs with large n.

Therefore, the SDPARA and the SDPARA-C have their own features and
strengths, and can be used in a complementary way to solve large SDPs.



4 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

More detailed information of the SDPARA and the SDPARA-C is available
at the SDPA web site.

http://grid.r.dendai.ac.jp/sdpa/

The single processor version (SDPA), and the MATLAB interface (SDPA-M)
are also available there.

This paper is composed as follows. In Section 4.2, we illustrate how we
use the SDPARA and the SDPARA-C through their application to the max-
imum clique number problem. If the reader wants to use them to solve an
SDP, Section 4.2 serves as a first step. The following sections deepen the
understanding about the software packages. In Section 4.3, an algorithmic
framework of primal-dual interior-point methods and some technical details
of the SDPARA and the SDPARA-C are discussed. We show their numerical
results on PC-clusters for large-scale SDPs in Section 4.4. Finally, we give
future directions in Section 4.5.

4.2 HOW TO USE THE SDPARA AND THE SDPARA-C

We first formulate an SDP relaxation of the maximum clique number problem
(MCQ) [14]. Then we describe how we write the input data of the resulting
SDP in the SDPA sparse format which the SDPARA and the SDPARA-C
accept as their inputs. The SDPA sparse format is a standard input format
for SDPs, and many benchmark problems are written in this format [5].

Let G(V,E) be a graph composed of a vertex set V = {1, 2, . . . , n} and an
edge set E = {{i, j} : i, j ∈ V }. A subset C of V is said to be a clique when
C induces a complete subgraph of G. In other words, all vertices in C are
connected to each other by edges of E. Then the maximum clique number
problem is to find a clique of maximum cardinality. As an illustrative example,
let us consider a graph given in Figure 4.1. In this case, {1, 2} and {2, 3, 5, 6}

1 2 3

4 5 6

Fig. 4.1 A sample graph for the max clique number problem

are examples of cliques, and the latter one consisting of four vertices forms a
clique of maximum cardinality; hence it is a solution of the maximum clique
number problem.

For a subset C ⊂ V , we introduce variables yi (i = 1, . . . , n) to make a
partition of V into C = {i : yi 6= 0} and V \C = {i : yi = 0}. Then the maxi-



HOW TO USE THE SDPARA AND THE SDPARA-C 5

mum clique number problem can be formulated as the following optimization
problem.

(MCQ) max{Σn
i=1Σ

n
j=1yiyj : yiyj = 0 ({i, j} /∈ E), Σn

i=1y
2
i = 1}.

The constraint yiyj = 0 ({i, j} /∈ E) ensures that C = {i : yi 6= 0} is a
clique, while the other constraint

∑n
i=1 y2

i = 1 bounds the objective value
from above. In the graph given in Figure 4.1, a clique {1, 2} induces a feasible
solution

y1 = y2 = 1/
√

2, y3 = y4 = y5 = y6 = 0

with the objective value 2, and the maximum cardinality clique {2, 3, 5, 6}
induces an optimal solution

y1 = y4 = 0, y2 = y3 = y5 = y6 = 1/2

with the objective value 4. In general, when an optimal objective value of
(MCQ) attains T , there exists a maximum clique C∗ ⊂ V of the cardinality
T with

yi =
{

1/
√

T for i ∈ C∗,
0 for i /∈ C∗.

By introducing a symmetric matrix variable Y ∈ Sn and replacing each
product yiyj with Yij , we can reduce (MCQ) to an equivalent matrix formu-
lation (MCQM),

(MCQM) max{E • Y : Eij • Y = 0 ({i, j} /∈ E),
I • Y = 1, Y º O, rank(Y ) = 1},

where E denotes an n × n matrix whose all elements are one, Eij an n × n
matrix whose all elements are zero except the (i, j) and (j, i) elements taking
one, and I the n×n identity matrix. The constraints Y º O and rank(Y ) = 1
are necessary to recover the vector y from the elements of Y . The (MCQM)
(or equivalently (MCQ)) is, however, NP-complete. The difficulty is caused
by the last non-convex constraint rank(Y ) = 1. We now relax (MCQM)
into (MCQR), which is an SDP in dual form, by ignoring the difficult rank
condition.

(MCQR) max{E • Y : Eij • Y = 0 ({i, j} /∈ E), I • Y = 1, Y º O}.

The optimal objective value of (MCQR) is called the theta function [20]. The
theta function is an upper bound of the optimal value of (MCQ) as well as a
lower bound of the minimum coloring number over the same graph.

In the case of the graph given in Figure 4.1, we know that {1, 3}, {1, 5},
{1, 6}, {2, 4} and {4, 6} are the node pairs having no edges. Hence (MCQR)



6 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

Table 4.1 mcq1.dat-s

Line 01 : 6 = m Line 19 : 0 1 3 6 1
Line 02 : 1 = nBLOCK Line 20 : 0 1 4 4 1
Line 03 : 6 = bLOCKsTRUCT Line 21 : 0 1 4 5 1
Line 04 : 0 0 0 0 0 1 Line 22 : 0 1 4 6 1
Line 05 : 0 1 1 1 1 Line 23 : 0 1 5 5 1
Line 06 : 0 1 1 2 1 Line 24 : 0 1 5 6 1
Line 07 : 0 1 1 3 1 Line 25 : 0 1 6 6 1
Line 08 : 0 1 1 4 1 Line 26 : 1 1 1 3 1
Line 09 : 0 1 1 5 1 Line 27 : 2 1 1 5 1
Line 10 : 0 1 1 6 1 Line 28 : 3 1 1 6 1
Line 11 : 0 1 2 2 1 Line 29 : 4 1 2 4 1
Line 12 : 0 1 2 3 1 Line 30 : 5 1 4 6 1
Line 13 : 0 1 2 4 1 Line 31 : 6 1 1 1 1
Line 14 : 0 1 2 5 1 Line 32 : 6 1 2 2 1
Line 15 : 0 1 2 6 1 Line 33 : 6 1 3 3 1
Line 16 : 0 1 3 3 1 Line 34 : 6 1 4 4 1
Line 17 : 0 1 3 4 1 Line 35 : 6 1 5 5 1
Line 18 : 0 1 3 5 1 Line 36 : 6 1 6 6 1

turns out to be

max{F 0 • Y : F k • Y = ck (k = 1, 2, . . . , 6), Y º O},

where

c1 = c2 = c3 = c4 = c5 = 0, c6 = 1,

F 0 = E, F 1 = E13, F 2 = E15,

F 3 = E16, F 4 = E24, F 5 = E46, F 6 = I.

Thus the resulting SDP corresponds to the dual SDP D with m = 6 and
n = 6.

The above input data is now converted into an SDPA sparse format file
with the name ‘mcq1.dat-s’, which is shown in Table 4.1. The extension ‘dat-
s’ is used to indicate that the file is written in the SDPA sparse format. The
1st line indicates the number m of input data matrices. The 2nd and the 3rd
lines describe the structure of the variable matrices. The SDPA sparse format
can handle a more general structure called the block diagonal structure. The
lines ‘nBLOCK’ and ‘bLOCKsTRUCT’ are used to express this structure. We
consider the entire matrix Y having only one diagonal block in this simple
example, hence the bLOCKsTRUCT corresponds to the dimension n of Y .
The input coefficient vector c is written in the 4th line. The other lines
denote the elements of F k(k = 0, 1, . . . , m). Each of the lines is composed of



HOW TO USE THE SDPARA AND THE SDPARA-C 7

five figures, that is, the index of the input data matrix, the index of the block,
the row number, the column number and the value. The index of the block
in this example is always 1 because of the single diagonal block structure.
For example, the 14th line indicates that the (2, 5)th element of F 0 is 1,
and the 33rd line indicates that the (3, 3)th element of F 6 is 1, respectively.
Note that we write only the upper-right elements since all the data matrices
F k (k = 0, 1, . . . ,m) are symmetric.

Now, supposing that the SDPARA and the SDPARA-C are installed, we
can execute them via mpirun command. These software packages adopt the
MPI (Message Passing Interface) for network communication between multi-
ple processors.

$ mpirun -np 4 ./sdpara mcq1.dat-s mcq1.result.sdpara
$ mpirun -np 4 ./sdpara-c mcq1.dat-s mcq1.result.sdpara-c

In the above example, we assign four processors by the argument ‘-np 4’.
The commands ‘./sdpara’ and ‘./sdpara-c’ are the SDPARA and the
SDPARA-C executables, respectively. The last arguments
‘mcq1.result.sdpara’ and ‘mcq1.result.sdpara-c’ are file names in which
logs and results of the computation are written.

Both the SDPARA and the SDPARA-C can solve this small example in a
second. The computation logs printed out to the screen include the following
information.

objValPrimal = 4.0000000207e+00
objValDual = 3.9999999319e+00

These values are the primal and dual optimal objective values, respectively.
Since we solve the relaxation problem, the dual objective value 4 is an upper
bound of the maximum clique number. Recall that {2, 3, 5, 6} is a maximum
cardinality clique consisting of four vertices.

We find an optimal solution (x∗, X∗,Y ∗) in the assigned result file
‘mcq1.result.sdpara’. From the optimal dual variable matrix Y ∗, we con-
struct the vector y∗ via the relation Y ∗

ij = y∗
i y∗

j as follows:

Y ∗ =




0 0 0 0 0 0
0 1/4 1/4 0 1/4 1/4
0 1/4 1/4 0 1/4 1/4
0 0 0 0 0 0
0 1/4 1/4 0 1/4 1/4
0 1/4 1/4 0 1/4 1/4




,

y∗
1 = y∗

4 = 0, y∗
2 = y∗

3 = y∗
5 = y∗

6 = 1/2.

Hence y∗ indicates that C∗ = {2, 3, 5, 6} is a maximum cardinality clique.
We should mention that we can not always construct y∗ from Y ∗ in general,



8 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

because we have solved a relaxation problem obtained by ignoring the rank
condition on Y .

In summary:

1. We formulate a target problem into a standard SDP and define the input
data c and F k (k = 0, 1, . . . , m).

2. We write accordingly the input file in the SDPA sparse format.
3. We obtain information regarding an optimal solution from the screen

and an output file.

4.3 ALGORITHMIC FRAMEWORK AND PARALLEL
IMPLEMENTATION

In the previous section, we have described how to use the parallel software
packages, the SDPARA and the SDPARA-C. In this section, we focus on their
algorithmic framework and some details on how we receive benefits from their
parallel implementation to shorten their total computation time.

4.3.1 Primal-dual interior-point method

Both of the SDPARA and the SDPARA-C are based on the Primal-Dual
Interior-Point Method (PD-IPM). To explain the details of the parallel im-
plementation, we start from the algorithmic framework of the PD-IPM. The
main feature of the PD-IPM is that it deals with the primal SDP P and
the dual SDP D simultaneously, keeping the positive definiteness of variable
matrices X and Y along the iterations until we obtain approximate optimal
solutions of P and D.

We first investigate the characteristics of the optimal solution. Let
(x+, X+, Y +) and (x∗, X∗, Y ∗) be feasible and optimal solutions of the SDP
(the pair of P and D), respectively. Under the assumption that the SDP has
an interior feasible solution, the duality theorem ensures that there is no gap
between the primal and dual optimal objective values, that is,

F 0 • Y + ≤ F 0 • Y ∗ =
m∑

k=1

ckx∗
k ≤

m∑

k=1

ckx+
k .

Since the optimal solution (x∗, X∗, Y ∗) satisfies the primal matrix equality
and dual linear constraints, it follows that

X∗ • Y ∗ =
m∑

k=1

ckx∗
i − F 0 • Y ∗ = 0.

Since we also know that X∗ º O and Y ∗ º O, we can further derive
X∗Y ∗ = O. As a result, we obtain the Karush-Kuhn-Tucker (KKT) op-



ALGORITHMIC FRAMEWORK AND PARALLEL IMPLEMENTATION 9

timality condition:

(KKT)





X∗ =
∑m

k=1 F kx∗
k − F 0,

F k • Y ∗ = ck (k = 1, 2, . . . , m),
X∗Y ∗ = O,
X∗ º O, Y ∗ º O.

In the PD-IPM, the central path plays a crucial role in computing an opti-
mal solution. The central path is composed of points defined by a perturbed
KKT optimality condition:

The central path ≡ {(x(µ), X(µ), Y (µ)) ∈ Rm × Sn × Sn : µ > 0},

where (x(µ), X(µ), Y (µ)) satisfies

(perturbed KKT)





X(µ) =
∑m

k=1 F kx(µ)k − F 0,
F k • Y (µ) = ck (k = 1, 2, . . . , m),
X(µ)Y (µ) = µI,
X(µ) Â O, Y (µ) Â O.

For any µ > 0, there exists a unique (x(µ),X(µ),Y (µ)) ∈ Rm × Sn ×
Sn satisfying (perturbed KKT), and the central path forms a smooth curve.
We also see from X(µ)Y (µ) = µI that X(µ) • Y (µ) = nµ. It should be
emphasized that the central path converges to an optimal solution of the SDP;
(x(µ), X(µ), Y (µ)) converges to an optimal solution of the SDP as µ → 0.
Thus the PD-IPM traces the central path numerically as decreasing µ toward
0.

Algorithmic Framework of the PD-IPM

Step 0: (Initialization) We choose an initial point (x0, X0, Y 0) with
X0 Â O, Y 0 Â O. Let µ0 = X0 • Y 0/n and h = 0. We set the
parameters 0 < β < 1 and 0 < γ < 1.

Step 1: (Checking Convergence) If µh is sufficiently small and
(xh, Xh, Y h) approximately satisfies the feasibility, we print out
(xh, Xh, Y h) as an approximate optimal solution and stop.

Step 2: (Search Direction) We compute a search direction (dx, dX, dY )
toward a target point (x(βµh), X(βµh),Y (βµh)) on the central path
with µ = βµh.

Step 3: (Step Length) We compute step lengths αp and αd such that Xh+
αpdX and Y h + αddY remain positive definite. In the course of this
computation, γ is used to keep positive definiteness.

Step 4: (Update) We update the current point by
(xh+1,Xh+1,Y h+1) = (xh + αpdx, Xh + αpdX, Y h + αddY ). Let
µh+1 = Xh+1 • Y h+1/n and h ← h + 1. Go to Step 1.



10 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

In general we do not require that the initial point (x0, X0, Y 0) is a feasible
solution. When (xh, Xh,Y h) is infeasible, the step lengths αp and αd in
Step 3 need to be chosen so that some feasibility measure improves as well as
Xh + αpdX and Y h + αddY remain positive definite.

The computation of the search direction (dx, dX, dY ) in Step 2 usually
consumes most of the computation time. A fundamental strategy to shorten
the total computation time in parallel processing is to use a distributed com-
putation in Step 2. This will be described in the next subsection. Ideally,
we want to take a search direction (dx, dX, dY ) so that (xh + dx, Xh +
dX,Y h + dY ) coincides with the targeting point (x(βµh),X(βµh), Y (βµh))
on the central trajectory with µ = βµh, which leads to





Xh + dX =
∑m

k=1 F k(xh
k + dxk) − F 0,

F k • (Y h + dY ) = ck (k = 1, 2, . . . ,m),
(Xh + dX)(Y h + dY ) = βµhI.

Here we ignore the positive definite conditions Xh +dX º O and Y h +dY º
O because we recover the conditions by adjusting the step lengths αp and αd in
Step 3. The above system is almost a linear system except the term dXdY in
the last equality. Neglecting the nonlinear term and introducing an auxiliary
matrix d̃Y , we can reduce the system of nonlinear equations above into the
following system of linear equations.





Bdx = r,
dX = P +

∑m
k=1 F kdxk,

d̃Y = (Xh)−1(R − dXY h), dY = (d̃Y + d̃Y
T
)/2,

where




Bij = ((Xh)−1F iY
h) • F j (i = 1, 2, . . . , m, j = 1, 2, . . . ,m),

ri = −di + F i • ((Xh)−1(R − PY h)) (i = 1, 2, . . . , m),
P =

∑m
k=1 F kxh

k − F 0 − Xh,

di = ci − F i • Y h (i = 1, 2, . . . , m),
R = βµhI − XhY h.

(4.1)

We call the system of linear equations Bdx = r the Schur complement
equation (SCE) and its coefficient matrix B the Schur complement matrix
(SCM). We first solve the SCE, then compute dX and dY . Note that the
size of the SCM B corresponds to the number m of equality constraints in
D. Since the SCM B is positive definite through all iterations of the PD-
IPM, we apply the Cholesky factorization to B for computing the solution
dx of the SCE. The computation cost to evaluate the SCM B is O(m2n2 +
mn3) arithmetic operations when the data matrices F k (k = 1, 2, . . . ,m)
are fully dense, while its Cholesky factorization requires O(m3) arithmetic
operations since B becomes fully dense in general even when some of the



ALGORITHMIC FRAMEWORK AND PARALLEL IMPLEMENTATION 11

data matrices are sparse. The auxiliary matrix d̃Y is introduced to make
dY symmetric. The search direction used here is called the HRVW/KSH/M
direction [15, 18, 22].

The name ‘interior-point method’ comes from Step 3. We adjust the step
lengths αp and αd to retain Xh+1 and Y h+1 in the interior of the cone of
positive definite matrices, that is, Xh+1 Â O and Y h+1 Â O for all h.
Using the Cholesky factorization of Xh, we first compute the maximum ᾱp

of possible step lengths α such that Xh + αdX º O. Then the step length
αp in Step 3 is chosen such that αp = γ min{1, ᾱp} by the given parameter
γ ∈ (0, 1), for example, γ = 0.9. Let L be the lower triangular matrix from
the Cholesky factorization of Xh = LLT and let PΛP T be the eigenvalue
decomposition of L−1dXL−T . Then we have

Xh + αdX º O ⇔ LLT + αdX º O ⇔ I + αL−1dXL−T º O

⇔ I + αPΛP T º O ⇔ P T IP + αP T PΛP T P º O ⇔ I + αΛ º O.

Hence ᾱp is given by

ᾱp =
{

−1/λmin if λmin < 0,
+∞ otherwise,

where λmin is the minimum diagonal value of Λ. In the computation of ᾱp

above, we need only λmin but not the full eigenvalue decomposition PΛP T .
In the software packages SDPA, SDPARA and SDPARA-C, we adopt the
Lanczos method [30] to compute the minimum eigenvalue of L−1dXL−T .
The step length αd is computed in the same way.

4.3.2 Parallel computation in the SDPARA

To apply parallel processing to the PD-IPM, we need to investigate which
components of the PD-IPM are bottlenecks when we solve SDPs on a single
processor. In general, the following four components occupy more than 90%
of the computation time.

1. [ELEMENTS] The evaluation of the SCM B (O(mn3+m2n2) arithmetic
operations in dense computation).

2. [CHOLESKY] The Cholesky factorization of the SCM B (O(m3) arith-
metic operations).

3. [DMATRIX] The computation of dY (O(n3) arithmetic operations).

4. [DENSE] The other matrix manipulations (O(n3) arithmetic opera-
tions).

Table 4.2 shows how much computation time is spent in each component
when we solve three SDPs with the SDPA 6.00 [35] on a single processor



12 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

Pentium 4 (2.2GHz) and 1GB memory space. The SDPs, control11, theta6
and maxG51, are from the benchmark collection SDPLIB [5]. The SDP con-
trol11 is formulated from a stability condition in control theory, while theta6
and maxG51 are SDP relaxations of combinatorial optimization problems;
the maximum clique number problem and the maximum cut problem, respec-
tively.

Table 4.2 Time consumption of each component for control11, theta6 and
maxG51 on a single processor (time unit is second)

control11 theta6 maxG51
time ratio time ratio time ratio

ELEMENTS 463.2 91.6% 78.3 26.1% 1.5 1.0 %
CHOLESKY 31.7 6.2% 209.8 70.1% 3.0 2.1 %
DMATRIX 1.8 0.3% 1.8 0.6% 47.3 33.7%
DENSE 1.0 0.2% 4.1 1.3% 86.5 61.7%
Others 7.2 1.4% 5.13 1.7% 1.8 1.3%

Total 505.2 100.0% 292.3 100.0% 140.2 100.0 %

Although the SDPA effectively utilizes the sparsity of input data matrices
F k(k = 1, . . . , m) [9], the ELEMENTS component still occupies 90% of the
computation time in the case of control11. On the other hand, 70% is con-
sumed by the CHOLESKY component in the case of theta6. In either case,
the components regarding the SCM B spend more than 95% of the compu-
tation time. Therefore they are obviously bottlenecks on a single processor.
The main strategy in the SDPARA [36] is to replace these two components
by their parallel implementation. The other two components, DMATRIX and
DENSE, are left as a subject of the SDPARA-C.

Let us examine the formula for the elements of the SCM B,

Bij = ((Xh)−1F iY
h) • F j (i = 1, . . . , m, j = 1, . . . , m).

When multiple processors are available, we want each processor to work in-
dependently from the other processors, because a network communication
among the processors prevents them from devoting their full performance to
computation. We remark that each element can be evaluated on each proces-
sor independently, when each processor stores input data matrices F k (k =
1, . . . , m) and the variable matrices (Xh)−1 and Y h. Furthermore, all ele-
ments in the ith row of B share the computation (Xh)−1F iY

h. Therefore,
it is reasonable that only one processor compute all elements in each row of
B to avoid duplicate computation in the evaluation of the entire B.



ALGORITHMIC FRAMEWORK AND PARALLEL IMPLEMENTATION 13

Processor 1

Processor 2

Processor 3

Processor 4

Processor 1

Processor 2

Processor 3

Processor 4

Processor 1

B

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Fig. 4.2 Parallel evaluation of the
Schur complement matrix

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 1

3

1

3

1

3

1

3

1

11

33

1

3

2

1

3

22

2

4 4

44

2

2

2

2

4 4

44

2 2

1

1

3

3

1

1

3

1

3

1

1

3

3

1

3

1

3

1

2

4

2

4

2

4

2

4

2

2

2

4

4

2

2 1

1

3

3

1

1

3

3

1

4

4

2

Fig. 4.3 Two-dimensional block-
cyclic distribution of the Schur comple-
ment matrix for parallel Cholesky fac-
torization

In the SDPARA, we implement the row-wise distribution for the ELE-
MENTS component. Figure 4.2 shows the row-wise distribution where the
size of the SCM B is 9 and 4 processors are available. Since B is symmetric,
we compute only the upper triangular part. In the row-wise distribution, we
assign each processor to each row in a cyclic manner. To be precise, in gen-
eral case, let m be the size of the SCM B and U be the number of available
processors. Then the uth processor computes the elements Bij ((i, j) ∈ Pu),
where

Pu = {(i, j) : 1 ≤ i ≤ m, (i − 1)%U = (u − 1), i ≤ j ≤ m}

and a%b denotes the remainder of the division a by b. We can verify easily
that any row of B is covered by exactly one processor.

Before starting the PD-IPM, we duplicate the input data matrices F k (k =
1, . . . , m) and the initial point X0 and Y 0 on each processor. Hence, we
can evaluate the SCM B at the initial iteration without any communication
between multiple processors. Updating Xh and Y h on each processor ensures
that the independence can be held until the algorithm terminates. Although
the basic concept of the row-wise distribution seems very simple, it provides us
with the following three advantages. The first is that the row-wise distribution
attains a high scalability owing to no communication, which is shown by the
numerical results in Table 4.3. The second is that we can combine the row-
wise distribution with the technique developed for exploiting the sparsity in
[9]. The last advantage is that the memory space attached to each processor is
also independent from the other processors. In addition, the memory space is
almost equally divided into all processors, because the size m of B is usually
much greater than the number of available processors.



14 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

After the evaluation of the SCM B, we proceed to its Cholesky factorization
for computing the solution of the SCE Bdx = r. We adopt the parallel
Cholesky factorization equipped by the ScaLAPACK [3]. Here we briefly
explain how to distribute the elements of B to the processors for the Cholesky
factorization. For the ELEMENTS component, not only the computation but
also the memory space are divided by the row-wise distribution. However,
the ScaLAPACK assumes that the matrix is distributed in a specific memory
distribution called the Two-Dimensional Block-Cyclic Distribution (TD-BCD)
to accelerate its parallel processing performance. Figure 4.3 illustrates the
TD-BCD when B is a 9×9 matrix and 4 processors are used. For example, the
(2, 4)th and the (7, 5)th elements are stored on the memory spaced attached
to the 2nd processor and the 3rd processor, respectively.

To bridge the two different memory distributions, we redistribute the SCM
B from the row-wise distribution to the TD-BCD in each PD-IPM iteration.
The network communication cost for the redistribution is justified by a signif-
icant difference in the computation times between the Cholesky factorization
on the TD-BCD and that on the row-wise distribution.

Except the ELEMENTS and CHOLESKY components, the SDPARA
works in the same way as the SDPA on a single processor. Therefore, sav-
ing computation time in the SDPARA is entirely done in these two parallel
components. Table 4.3 shows numerical results on the SDPARA applied to
control11 and theta6. More numerical results on extremely large SDPs from
quantum chemistry will be reported in Section 4.4. All numerical experiments
on the SDPARA and the SDPARA-C in this paper, except Section 4.4.1, were
executed on the PC-cluster Presto III at Tokyo Institute of Technology. Each
node of the cluster has an Athlon 1900+ processor and 768 MB memory,
and all nodes are connected by Myrinet 2000. The high-speed network via
Myrinet 2000 is necessary to get enough performance of the parallel Cholesky
factorization.

Table 4.3 Performance of the SDPARA on control11 and theta6 (time in
second)

number of processors 1 4 16 64

control11 ELEMENTS 603.4 146.8 35.9 9.0
CHOLESKY 54.5 18.7 10.1 5.3

Total 685.3 195.0 66.6 31.8

theta6 ELEMENTS 166.0 60.3 18.6 5.5
CHOLESKY 417.3 93.3 35.6 17.3

Total 600.6 166.9 66.7 35.5



ALGORITHMIC FRAMEWORK AND PARALLEL IMPLEMENTATION 15

From Table 4.3, we observe that the SDPARA can solve control11 and
theta6 faster as more processors participate. Scalability is a criterion to evalu-
ate the effectiveness of parallel computation, which measures how much faster
a parallel software package can solve problems on multiple processors com-
pared to a single processor case. We emphasizes here that the ELEMENTS
component attains a very high scalability; in particular, it is almost an ideal
scalability (linear scalability) in the case of control11. In both cases, the
CHOLESKY component also attains a high scalability. We obtain 3.5 times
total speed up on 4 processors and 21.5 times total speed up on 64 processors,
respectively, in the case of control11, while we obtain 3.6 times total speed up
on 4 processors and 16.9 times total speed up on 64 processors, respectively,
in the case of theta6. The difference can be explained by the fact that the
ELEMENTS component occupies 88% of the computation time on a single
processor in the former case while the CHOLESKY component occupies 69%
in the latter case.

4.3.3 The positive definite matrix completion method and the
SDPARA-C

The SDPARA works effectively on general SDPs whose computation time is
occupied mostly by the ELEMENTS and CHOLESKY components. However,
some SDPs arising from combinatorial optimization consume most of their
computation time on the other components, the DMATRIX and DENSE.
Particularly, this feature becomes clearer when the input data matrices are
extremely sparse, for instance, when each input data matrix involves only one
or two nonzero elements. The SDPARA-C (SDPARA with the positive defi-
nite matrix Completion) [25] is designed to solve such sparse SDPs. We first
present the basic idea behind the positive definite matrix completion method
using a simple example, and then mention how we combine the method with
parallel computation in the SDPARA.

As an illustrative example, we consider the SDP with the following input
data

m = 2, n = 4, c1 = 3, c2 = 5,

F 0 =




−7 0 0 −1
0 −5 0 0
0 0 −8 3

−1 0 3 −4


 , F 1 =




2 0 0 −1
0 0 0 2
0 0 −3 0

−1 2 0 1


 ,

F 2 =




−1 0 0 0
0 −2 0 −1
0 0 3 1
0 −1 1 −2


 .



16 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

Define the aggregate sparsity pattern over the input data matrices by

A = {(i, j) : the (i, j)th element of F k is nonzero
for some k (k = 0, 1, . . . ,m) }.

We can represent the aggregate sparsity pattern A as a matrix A and a graph
in Figure 4.4 which we call the aggregated sparsity pattern matrix and graph,
respectively.

A =




? 0 0 ?
0 ? 0 ?
0 0 ? ?
? ? ? ?


 ,

1 2

3 4

Fig. 4.4 Aggregate sparsity
pattern graph

When we deal with the primal SDP P with the input data given above,
we only need the elements Xij ((i, j) ∈ A) to verify the feasibility of a given
(x, X), and we can perform all computation in the PD-IPM without using
the other elements Xij ((i, j) 6∈ A). For example, dX as well as the Cholesky
factor L of X have the same sparsity pattern as A, and we can use them to
compute the step length αp.

Now we focus our attention to the dual SDP D. We first observe that only
elements Yij ((i, j) ∈ A) are also used to evaluate the objective function F 0•Y
and the equality constraints F k • Y = ck (k = 1, 2, . . . , m). But the other
elements Yij ((i, j) 6∈ A) are necessary to evaluate the positive definiteness
and/or semidefiniteness of Y . Therefore, the following problem is a key to
an effective use of the sparsity in the dual side: when Yij = Y ij ((i, j) ∈ A)
are given, choose Yij = Y ij ((i, j) 6∈ A), so that the resulting entire matrix
Y = Y is positive definite. This problem is known as the positive definite
matrix completion problem. In the example under consideration, the matrix
Y with known Yij = Y ij ((i, j) ∈ A) but unknown values for all other elements
has a positive definite matrix completion (a positive definite matrix Ŷ with
Ŷij = Y ij ((i, j) ∈ A)), if and only if

(
Y 11 Y 14

Y 41 Y 44

)
Â O,

(
Y 22 Y 24

Y 42 Y 44

)
Â O,

(
Y 33 Y 34

Y 43 Y 44

)
Â O.

Furthermore, we can choose Ŷ such that its inverse Ŷ
−1

is a sparse matrix
with the same sparsity pattern as A although Ŷ itself becomes fully dense.



ALGORITHMIC FRAMEWORK AND PARALLEL IMPLEMENTATION 17

We can also compute the Cholesky factor M of Ŷ
−1

, which has the same
sparsity pattern as A, without knowing the elements Ŷij ((i, j) 6∈ A).

Using the same example as above, we now briefly mention how we incorpo-
rate the positive definite matrix completion in each iteration of the PD-IPM.
Suppose that the hth iterate (xh,Xh, Y h) is given. Here we assume that
Xh is a positive definite matrix with the sparsity pattern A, and that Y h

is a partial matrix with known elements Y h
ij = Y

h

ij ((i, j) ∈ A) satisfying the
condition:

(
Y h

11 Y h
14

Y h
41 Y h

44

)
Â O,

(
Y h

22 Y h
24

Y h
42 Y h

44

)
Â O,

(
Y h

33 Y h
34

Y h
43 Y h

44

)
Â O;

this condition ensures that the partial matrix Y h has a positive definite ma-
trix completion. To compute the search direction (dx, dX, dY ), we first ap-
ply the Cholesky factorization to Xh and (Y h)−1; PXhP T = LLT and
Q(Y h)−1QT = MMT . Here P and Q denote some permutation matrices.
For simplicity of notation, we assume that we adequately permutate the rows
and columns of Xh and (Y h)−1 by a pre-processing so that P and Q are the
identify matrix in the remainder of this section. It should be noted that both
L and M have the same sparsity pattern as A, and that we can compute M
directly from the known elements Y h

ij ((i, j) ∈ A) of Y h without generating
the dense positive definite completion of Y h. We then replace Xh by LLT

and Y h by (MMT )−1 in the formula we have given in Section 4.3.1 for the
search direction (dx, dX, dY ). This replacement makes it possible for us to
compute (dx, dX, dY ) by using only matrices with the same sparsity pattern
as A. In particular, dX has the same sparsity pattern as A and dY is a
partial matrix with known elements dY ij = dY ij ((i, j) ∈ A). Then we com-
pute the primal step length αp and the next primal iterate (xh+1, Xh+1) as
in Section 4.3.1, and the dual step length αd and the next dual iterate Y h+1

(a partial matrix with elements Y h+1
ij ((i, j) ∈ A) such that

(
Y h+1

11 Y h+1
14

Y h+1
41 Y h+1

44

)
=

(
Y h

11 Y h
14

Y h
41 Y h

44

)
+ αd

(
dY11 dY14

dY41 dY44

)
Â O,

(
Y h+1

22 Y h+1
24

Y h+1
42 Y h+1

44

)
=

(
Y h

22 Y h
24

Y h
42 Y h

44

)
+ αd

(
dY22 dY24

dY42 dY44

)
Â O,

(
Y h+1

33 Y h+1
34

Y h+1
43 Y h+1

44

)
=

(
Y h

33 Y h
34

Y h
43 Y h

44

)
+ αd

(
dY33 dY34

dY43 dY44

)
Â O.

The positive definite matrix completion method described above for this
simple example can be extended to general cases where the aggregated sparsity
pattern graph G(V, E) of the input data matrices F 0, F 1, . . . ,F m has a sparse
chordal extension. Here a graph is said to be chordal if any minimal cycle
contains at most three edges. We recall that the aggregated sparsity pattern
graph of the example itself (Figure 4.4) is a chordal graph since there is no



18 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

2

1

5

6 3

4

Fig. 4.5 Aggregate sparsity pattern

2

1

5

6 3

4

Fig. 4.6 Extended sparsity pattern

cycle, and that the principal sub-matrices, whose positive definiteness have
been checked to see whether the partial matrix Y has a positive definite
matrix completion, are corresponding to the maximal cliques of the graph.
As another example, consider an SDP with data matrices whose aggregated
sparsity pattern graph G(V, E) is given by Figure 4.5. This graph is not
chordal because C = {2, 5, 3, 6} is a minimal cycle having 4 edges. Adding
an edge {2, 3}, we make a chordal extension G(V, E) of G(V, E), which is
illustrated in Figure 4.6. The extended graph G(V, E) is corresponding to an
extended aggregated sparsity pattern

A =
{
(i, j) : i = j or {i, j} ∈ E

}
.

The set of maximal cliques of the extended graph is given by

C = {{1, 2, 5}, {2, 3, 5}, {2, 3, 6}, {4, 5}} .

For each C ∈ C and each Y ∈ Sn, let Y C denote the principal sub-matrix
consisting of the elements Yij with (i, j) ∈ C × C. Then we can state the
basic property on the positive definite matrix completion as follows. A partial
matrix Y with known elements Yij = Y ij ((i, j) ∈ A) has a positive definite
matrix completion if and only if Y C Â O for every C ∈ C. If Y has a
positive definite matrix completion, we can compute the Cholesky factor M

of Ŷ
−1

with the property that both M and Ŷ
−1

have the same sparsity
pattern as A. Using these facts, we can extend the positive definite matrix
completion method to general cases where the aggregated sparsity pattern
graph G(V, E) of the input data matrices has a sparse chordal extension.
Usually a chordal extension of a sparse graph is not unique, and we employ
heuristic methods implemented in SPOOLES [2] and/or METIS [16] to choose
an effective chordal extension. See the papers [12, 23] for more details.

Now we proceed to how we incorporate the positive definite completion
method into parallel computation. Specifically, we present how we compute
the elements of the SCM B in the SDPARA-C. Let G(V, E) be the aggregated
sparsity pattern graph of data matrices F 0, F 1, . . . ,F m of an SDP to be
solved, and A be an extended aggregated sparsity pattern matrix induced



ALGORITHMIC FRAMEWORK AND PARALLEL IMPLEMENTATION 19

from a chordal extension G(V, E) of G(V, E). Suppose that (xh,Xh, Y h) ∈
Rm × Sn × Sn is an iterate of the PD-IPM where we assume that Xh and
(Y h)−1 are matrices with the sparsity pattern A. Let L and M be the
Cholesky factors of Xh and (Y h)−1, respectively; Xh = LLT and (Y h)−1 =
MMT . Note that both L and M have the same sparsity pattern as A.
Substituting Xh = LLT and Y h = (MMT )−1 in the formula to compute
the elements of the SCM B, we have

Bij = Bji = F i • (L−T L−1F jM
−T M−1)

=
n∑

`=1

eT
` F iL

−T L−1F jM
−T M−1e`

=
n∑

`=1

(L−T L−1[F i]∗`)T F j(M−T M−1e`)

where e` denotes the `th coordinate unit vector and [F i]∗` is the `th column
of F i. Since L and M are sparse lower triangular matrices, the formula does
not require any dense matrix computation; for example, w = L−1[F i]∗` is
computed by solving the sparse triangular system of linear equations Lw =
[F i]∗`.

From the viewpoint of parallel processing, we emphasize that the modified
formula above preserves row-wise independence. That is, assuming that each
processor maintains the sparse matrices L, M and F j (j = 1, 2, . . . , m), it
can compute the ith row of the SCM B independently without communicat-
ing to the other processors. Therefore we could distribute the computation
of the elements of the SCM B to each processor row-wisely as done in the
SDPARA. We need, however, to take account of two more facts for efficient
parallel computation of the elements of the SCM B. The one is that the
computation cost of the ith row of B according to the above formula using L
and M is more expensive than the cost according the original formula using
(Xh)−1 and Y h mentioned in Section 4.3.2. The other fact, which is more
crucial, is that the computation cost of the ith row of B is proportional to
the number of nonzero columns of F i; if [F i]∗` = 0 in the formula above, the
term (L−T L−1[F i]∗`)T F j(M−T M−1e`) vanishes in the summation. Due to
these two facts, the direct use of the simple row-wise distribution of B over
the processors would cause considerable unbalance between the computation
costs of some ith and i′th rows in SDPs when F i has many nonzero columns
and F i′ has a few nonzero columns. In (MCQR) mentioned in Section 4.2,
only one data matrix I has n nonzero columns and all other data matrices of
the form Epq has two nonzero columns, so the computation cost of the row of
B corresponding to the identity matrix I is about n/2 times expensive than
that corresponding to the data matrix Epq.

In order to resolve the unbalance in the row-wise parallel computation of
the SCM B, we separate the row indices {i : 1 ≤ i ≤ m} of B into two



20 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

disjoint subsets Q and R according to the number of nonzero columns of
F i (i = 1, 2, . . . , m):

Q =
{

i :
1 ≤ i ≤ m, the number of nonzero columns of F i

exceeds some threshold

}
,

R = {i : 1 ≤ i ≤ m} \ Q.

In applications to combinatorial optimization such as the maximum clique
number problem and the maximum cut problem, the cardinality of Q is ex-
pected small and the cardinality of R is much larger than the number of
processors. We apply the row-wise parallel computation to all rows with in-
dices i ∈ R, while for each row with index i ∈ Q and each ` with [F i]∗` 6= 0,
we assign the computation of terms (L−T L−1[F i]∗`)T F j(M−T M−1e`) (i ≤
j ≤ m) to a single processor, and then all such terms are gathered and accu-
mulated with respect to ` to compute the entire ith row of B. We call this way
of distribution of the elements of the SCM as a hashed row-wise distribution.

A similar modification is performed to compute d̃Y (the DMATRIX com-
ponent). We use the following formula

[d̃Y ]∗` = βµL−T L−1e` − M−T M−1e` − L−T L−1dXM−T M−1e`

(` = 1, 2, . . . , n)

instead of the original one

d̃Y = X−1(R − dXY ) = βµX−1 − Y − X−1dXY .

The computation of each [d̃Y ]∗` is distributed to a single processor, and thus
the entire d̃Y is computed in parallel. See [25] for more technical details.

As we have discussed so far, we have three parallelized components in
the SDPARA-C. The first is the ELEMENTS in which the hashed row-wise
distribution is adopted . The second is the CHOLESKY, which is identical to
the CHOLESKY components of the SDPARA. The last one is the DMATRIX.
Table 4.4 shows the computation time and the required memory space on
each processor when we apply the SDPA, the SDPARA and the SDPARA-C
to (MCQR) with m = 1891, n = 1000 on Presto III. We use 64 processors for
the latter two parallel software packages.

The ELEMENTS and CHOLESKY components are successfully shortened
by the SDPARA as in the previous test problems control11 and theta6 in
Table 4.3. However, the total scalability in Table 4.4 is not so good because the
computation time for the DMATRIX and DENSE components remains large
without any reduction. On the other hand, the SDPARA-C works effectively
on the latter two components owing to the positive definite matrix completion
method. Storing the sparse Cholesky factor M of (Y h)−1 instead of the full
dense matrix Y h considerably saves the memory space. The time reduction



NUMERICAL RESULTS 21

Table 4.4 Computation time and memory space for SDPA, SDPARA and
SDPARA-C

SDPA SDPARA SDPARA-C

ELEMENTS 82.0s 7.7s 10.5s
CHOLESKY 25.3s 2.9s 4.0s
DMATRIX 69.4s 69.0s 2.4s
DENSE 125.7s 126.1s 2.3s

Total computation time 308s 221s 26s

Memory space for B 27MB 1MB 1MB
Memory space for n × n matrices 237MB 237MB 8MB

Total memory space 279MB 265MB 41MB

in the DMATRIX component is owing to the combination of the positive
definite matrix completion method and parallel computation. We also notice
that the computation time for the ELEMENTS component in the SDPARA-C
is slightly larger than that in the SDPARA. The reason is that the modified
formula for computing the elements of B using the Cholesky factors L of
(Xh) and M of (Y h)−1 is a little more expensive than the original formula
used for the SDPA and SDPARA.

4.4 NUMERICAL RESULTS

In this section, we present numerical results on the SDPARA and the
SDPARA-C applied to large-scale SDPs from quantum chemistry and combi-
natorial optimization. We also report numerical results on some benchmark
problems from DIMACS challenge and SDPLIB [5], which exhibit a clear
difference between the two software packages.

4.4.1 Numerical results on the SDPARA

Applications of SDPs to quantum chemistry are found in [11, 24]. Computing
the ground-state energies of atomic/molecular systems with high accuracy is
essential to investigate chemical reactions involving these systems, and it is
one of the most challenging problems in computational quantum chemistry,
too. It is known that the statuses of the electrons involved in these systems can
be expressed by positive semidefinite matrices called reduced density matrices.
Since Coleman [7], we know that a lower bound of the ground-state energy
of a system, under a certain discretization, can be formulated as an SDP, if



22 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

we only consider a subset of the conditions which define the original reduced
density matrices. An interesting fact is that if we restrict ourselves to just
characterize the diagonal elements of the reduced density matrices for any
system, this problem becomes equivalent to the description of all facets of the
cut polytope, and therefore, an NP-hard problem [8].

The resulting SDP which approximates the ground-state energy via a subset
of the above conditions is extremely large even for small atoms/molecules.
This SDP involves a large number m of equality constraints that a single
processor requires a huge amount of time to solve or even can not store it in
the physical memory space.

We apply the SDPARA to the six SDPs formulated from the ground-state
energy computation of atoms/molecules: CH+

3 , Na, O, HNO, HF and CH3N
[11]. The number m of equality constraints, the size n of data matrices, the
number of diagonal blocks of data matrices ‘#blocks’, and the sizes of the four
largest diagonal blocks ‘largest’ are given in Table 4.5. As briefly mentioned
in Section 4.2, if the SDP can be written in block diagonal structure, all the
routines of the PD-IPM can be executed separately for each block diagonal
matrix, and then combined later. Suppose that the data/variable matrices
consist of s diagonal blocks whose sizes are n1, n2, . . . , ns. Then the total size
of the data/variable matrices are n =

∑s
r=1 nr. The computation cost for the

ELEMENT component, for instance, becomes O(m2
∑s

r=1 n2
r + m

∑s
r=1 n3

r)
arithmetic operations instead of O(mn3 + m2n2).

Table 4.5 SDPs from quantum chemistry

atoms/molecules m n #blocks largest

CH+
3 2964 3162 22 [736, 736, 224, 224]

Na 4743 4426 22 [1053, 1053, 324, 324]
O 7230 5990 22 [1450, 1450, 450, 450]

HNO 10593 7886 22 [1936, 1936, 605, 605]
HF 15018 10146 22 [2520, 2520, 792, 792]

CH3N 20709 12802 22 [3211, 3211, 1014, 1014]

Table 4.6 shows how much computation time the SDPARA spends to solve
the SDPs changing the number of available processors. The numerical results
in Table 4.6 were executed on AIST (National Institute of Advanced Indus-
trial Science and Technology) super cluster P32. Each node of P32 has two
Opteron 2GHz processors and 6GB Memory space. The marks ‘*’ in Table 4.6
mean that we avoid solving the SDPs by smaller number of processors due to
enormous computation time.

We first observe that the ideal scalability is attained in the ELEMENTS
component on all SDPs. This is owing to the row-wise distribution of the
elements of the SCM B which requires no communication among multiple



NUMERICAL RESULTS 23

Table 4.6 Performance of the SDPARA on SDPs from quantum chemistry

number of processors 8 16 32 64 128 256

CH+
3 ELEMENTS 1202.8 620.0 368.3 155.0 67.9 42.5

CHOLESKY 22.6 15.8 14.7 7.7 11.5 18.7
Total 1551.7 917.3 699.5 461.2 431.3 573.6

Na ELEMENTS 5647.8 2876.8 1534.6 768.8 408.7 212.9
CHOLESKY 95.0 64.3 54.8 38.9 30.9 63.4

Total 7515.6 4132.7 2468.2 1706.1 1375.7 1334.7

O ELEMENTS * 10100.3 5941.5 2720.4 1205.9 694.2
CHOLESKY * 218.2 159.9 87.3 68.2 106.2

Total * 14250.6 7908.2 4453.7 3281.1 2951.6

HNO ELEMENTS * * * 8696.4 4004.0 2083.3
CHOLESKY * * * 285.4 218.2 267.9

Total * * * 14054.7 9040.6 7451.2

HF ELEMENTS * * * * 13076.1 6833.0
CHOLESKY * * * * 520.2 671.0

Total * * * * 26797.1 20780.7

CH3N ELEMENTS * * * * 34188.9 18003.3
CHOLESKY * * * * 1008.9 1309.9

Total * * * * 57034.8 45488.9

processors. The SDPARA also speeds up the CHOLESKY component. Al-
though the scalability of the CHOLESKY component is not so good when
more than 128 processors participate, it enables the SDPARA to obtain suffi-
cient computation time reduction compared to a single processor. As a result,
the SDPARA attains a high total scalability; for example, the SDPARA on
256 processors solves the oxygen atom O 4.8 times faster than the SDPARA
on 16 processors.

We also emphasize that the computation time owing to the SDPARA enable
us to solve the largest SDP CH3N. Since the ELEMENTS components attains
almost the ideal scalability, we would require more than 1000 hours if we used
only a single processor. The SDPARA shrinks 40 days computation into a
half day.



24 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

4.4.2 Numerical results on the SDPARA-C

In Table 4.7, we apply the SDPARA-C to three SDPs, which arise from com-
binatorial optimization. They are SDP relaxations of the maximum cut prob-
lems and the max clique number problems on lattice graphs, respectively. A
lattice graph G(V, E) is defined by the following vertex set V and edge set E,

V = {(i, j) : 1 ≤ i ≤ P, 1 ≤ j ≤ Q},
E = {((i, j), (i + 1, j)) : 1 ≤ i ≤ P − 1, 1 ≤ j ≤ Q}

∪{((i, j), (i, j + 1)) : 1 ≤ i ≤ P, 1 ≤ j ≤ Q − 1}.

Here P and Q denote positive integers. The aggregate sparsity patterns of
cut-10-500 and clique-10-200 are covered by the corresponding lattice graphs.

Table 4.7 Sparse SDPs from combinatorial optimization

name m n

cut-10-500 5000 5000 max cut problem with P = 10, Q = 500
clique-10-200 3791 2000 max clique problem with P = 10, Q = 200
maxG51 1000 1000 from SDPLIB [5]

Table 4.8 Performance of the SDPARA-C on SDPs from combinatorial
optimization

number of processors 1 4 16 64

cut-10-500 ELEMENTS 937.0 270.4 74.6 23.0
CHOLESKY 825.1 142.0 49.7 19.9
DMATRIX 459.5 120.4 30.9 9.2

Total 2239.7 544.4 166.8 70.7

clique-10-200 ELEMENTS 2921.9 802.8 203.6 55.6
CHOLESKY 538.9 100.1 38.2 17.1
DMATRIX 197.4 51.9 14.6 5.5

Total 3670.1 966.2 266.5 95.6

maxG51 ELEMENTS 228.1 65.2 17.9 6.3
DMATRIX 220.1 60.1 20.3 18.4

DENSE 26.8 26.4 26.7 26.9
Total 485.7 157.2 70.1 61.1



NUMERICAL RESULTS 25

The numerical results on the SDPARA-C applied to the three SDPs are
shown in Table 4.8. In the table, we exclude components which can be com-
puted in less than 10 seconds even on a single processor. In the case of cut-
10-200, all three parallel components, ELEMENTS, CHOLESKY and DMA-
TRIX in the SDPARA-C clearly contribute to shortening the total computa-
tion time. We obtain 31.6 times speed up on 64 processors in comparison to
the computation time on a single processor. In the case of clique-10-200, the
ELEMENTS component attains a very high scalability, 52.6 times speed up
on 64 processors over the computation time on a single processor. We should
remind the discussion in Section 4.3.3 on unbalance among the computation
costs of rows of the SCM B and the hashed row-wise distribution of elements
of the SCM B to resolve it. Without the hashed row-wise distribution, we
could not attain the high scalability. On the other hand, parallel processing
does not yield any benefit on the DENSE component of maxG51 although
the other two components are considerably shortened. However, it should be
mentioned that the computation time of the DENSE component has already
been shortened by positive matrix completion method before applying parallel
processing.

4.4.3 Comparison between the SDPARA and the SDPARA-C

The test problems in this subsection are from SDPLIB [5] and the 7th DI-
MACS implementation challenge: semidefinite and related optimization prob-
lems. Table 4.9 shows numerical results on the SDPARA and the SDPARA-C
using the 64 processors of Presto III. The unit of computation time and mem-
ory space used are second and Mega Bytes, respectively.

The column ρ denotes the average density of the aggregated sparsity pat-
tern matrix, that is, the number of nonzeros in the aggregated sparsity pattern
matrix divided by n× n. When ρ is small, we regard that the SDP is sparse.
The SDPs whose names start with ‘torus’ are the benchmark test problems
from DIMACS, and all other problems are from SDPLIB.

In Table 4.9, ‘M’ means that the SDPARA can not solve the problem
due to lack of memory space. This fact shows us that the positive definite
matrix completion method incorporated in the SDPARA-C saves memory
space effectively. From the view point of computation time, we notice their
performance significantly depends on ρ. When the input data matrices of an
SDP are considerably sparse or ρ is smaller than 5.0e-2, the SDPARA-C works
more efficiently than the SDPARA. On the other hand, when the input data
matrices of an SDP are dense as in the cases of control11 with ρ = 4.5e-1 and
equalG51 with ρ = 5.3e-1, the SDPARA works better. Some characteristics
such as the number m of equality constraints and the extended aggregated
sparsity other than the average density ρ of the aggregated sparsity pattern
matrix also affect the performance of the SDPARA and the SDPARA-C. In
particular, it is not clear which of them works better for the moderately dense



26 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

Table 4.9 Performance on SDPLIB and DIMACS challenge problems

SDPARA SDPARA-C
m n ρ time memory time memory

maxG32 2000 2000 1.6e-2 M 31.8 51
thetaG11 2401 801 2.9e-2 130.3 182 22.7 15
equalG11 801 801 4.4e-2 141.3 177 17.2 40
qpG51 2000 1000 6.7e-2 416.4 287 654.8 139
thetaG51 6910 1001 1.4e-1 M 107.9 107
control11 1596 165 4.5e-1 29.9 67 2017.6 84
equalG51 1001 1001 5.3e-1 230.1 263 528.5 482

torusg3-8 512 512 1.5e-1 45.4 88 14.7 51
toruspm3-8-50 512 512 1.5e-1 34.7 88 14.8 51
torusg3-15 3375 3375 6.3e-2 M 575.0 463
toruspm3-15-50 3375 3375 6.3e-2 M 563.3 463

cases with 5.0e-2 ≤ ρ ≤ 2.0e-1 in Table 4.9. We conclude that the SDPARA
and the SDPARA-C complement each other.

4.5 FUTURE DIRECTIONS

In the previous section we have shown that the SDPARA and the SDPARA-C
can successfully solve large-scale sparse SDPs in short time. Each software
performs more efficiently than the other on some of the test problems, and
their roles are complementary. Also there are some small-scale (even dense
or small) SDPs which the SDPA on a single processor solves faster than the
SDPARA and the SDPARA-C because they are not large enough (and/or not
sparse enough) to apply parallel computation effectively. It is our future work
to develop a method of judging which software package is suitable for a given
SDP to be solved. With such method, we could provide an interface which
automatically assigns a given SDP to a suitable software package.

Under current circumstances, many readers do not have any hardware for
parallel computation. We will provide an online solver for SDPs; if the users
send an SDP written in the SDPA sparse format to the online solver via the
Internet, then the SDP is solved with a suitable software package among the
SDPA, the SDPARA and the SDPARA-C selected by the method mentioned
above, an the computational results are sent back to the user through the
Internet. We will attach a link of the online solver to the SDPA web site
below as soon as it is available.



FUTURE DIRECTIONS 27

http://grid.r.dendai.ac.jp/sdpa/

The source codes and manuals of the SDPA, the SDPARA and the SDPARA-
C are already available at this web site.

REFERENCES

1. F. Alizadeh, J. P. A. Haeberly and M. L. Overton, “Primal-dual interior-
point methods for semidefinite programming: Convergence rate, stability
and numerical results,” SIAM Journal on Optimization, 8, 746 (1998).

2. C. Ashcraft, D. Pierce, D. K. Wah and J. Wu, “The reference manual
for SPOOLES, release 2.2: An object oriented software library for solving
sparse linear systems of equations,” Boeing Shared Services Group, Seat-
tle, WA 98124 (1999).
Available at http://netlib.bell-labs.com/netlib/linalg/spooles/spooles.

3. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker
and R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

4. B. Borchers, “CSDP, a C library for semidefinite programming,” Opti-
mization Methods and Software, 11 & 12, 613 (1999).

5. B. Borchers, “SDPLIB 1.2, a library of semidefinite programming test
problems,” Optimization Methods and Software, 11 & 12, 683 (1999).

6. S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear matrix in-
equalities in system and control theory, Society for Industrial and Applied
Mathematics, Philadelphia, 1994.

7. A. J. Coleman, “Structure of fermion density matrices,” Reviews of Mod-
ern Physics, 35, 668 (1963).

8. M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag,
Berlin, 1997.

9. K. Fujisawa, M. Kojima and K. Nakata, “Exploiting sparsity in primal-
dual interior-point methods for semidefinite programming,” Mathematical
Programming, 79, 235 (1997).

10. K. Fujisawa, M. Kojima, K. Nakata and M. Yamashita, “SDPA (SemiDef-
inite Programming Algorithm) User’s Manual — Version 6.00,” Research
Report B-308, Dept. of Mathematical and Computing Sciences, Tokyo
Institute of Technology (2002).



28 PARALLEL PD-IPM FOR SEMIDEFINITE PROGRAMS

11. M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton, J. K. Percus, M. Ya-
mashita and Z. Zhao, “Large-scale semidefinite programs in electronic
structure calculation,” Research Report B-413, Dept. of Mathematical
and Computing Sciences, Tokyo Institute of Technology (2005).

12. M. Fukuda, M. Kojima, K. Murota and K. Nakata, “Exploiting sparsity in
semidefinite programming via matrix completion I: General framework,”
SIAM Journal on Optimization, 11, 647 (2000).

13. M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite pro-
gramming,” Journal of Association for Computing Machinery, 42, 1115
(1995).

14. M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, 2nd ed., Springer-Verlag, New York, 1993.

15. C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, “An interior-
point method for semidefinite programming,” SIAM Journal on Optimiza-
tion, 6, 342 (1996).

16. G. Karypis and V. Kumar, “METIS — A software package for partition-
ing unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices, version 4.0 —,” Department of Computer Sci-
ence/Army HPC Research Center, University of Minnesota, Minneapolis,
(1998).
Available at http://www-users.cs.umn.edu/˜karypis/metis/metis.

17. S. Kim, M. Kojima and H. Waki, “Generalized Lagrangian duals and
sums of squares relaxations of sparse polynomial optimization problems,”
To appear in SIAM Journal on Optimization.

18. M. Kojima, S. Shindoh and S. Hara, “Interior-point methods for the mono-
tone semidefinite linear complementarity problems,” SIAM Journal on
Optimization, 7, 86 (1997).

19. J. B. Lasserre, “Global optimization with polynomials and the problems
of moments,” SIAM Journal on Optimization, 11, 798 (2001).

20. L. Lovász, “On the Shannon Capacity of a Graph,” IEEE Transactions
on Information Theory, IT-25, 1 (1979).

21. L. Lovász and A. Schrijver, “Cones of matrices and set-valued functions
and 0-1 optimization,” SIAM Journal on Optimization, 1, 166 (1991).

22. R. D. C. Monteiro, “Primal-dual path following algorithms for semidefinite
programming,” SIAM Journal on Optimization, 7, 663 (1997).

23. K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota, “Ex-
ploiting sparsity in semidefinite programming via matrix completion II:



FUTURE DIRECTIONS 29

Implementation and numerical results,” Mathematical Programming, Se-
ries B, 95, 303 (2003).

24. M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata and K. Fu-
jisawa, “Variational calculations of fermion second-order reduced density
matrices by semidefinite programming algorithm,” Journal of Chemical
Physics, 114, 8282 (2001).

25. K. Nakata, M. Yamashita, K. Fujisawa, M. Kojima, “A parallel primal-
dual interior-point method for semidefinite programs using positive defi-
nite matrix completion,” Research Report B-398, Dept. of Mathematical
and Computing Sciences, Tokyo Institute of Technology (2003).

26. Yu. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Methods
in Convex Programming: Theory and Applications, Society for Industrial
and Applied Mathematics, Philadelphia, 1994.

27. Yu. E. Nesterov and M. J. Todd, “Primal-dual interior-point methods for
self-scaled cones,” SIAM Journal on Optimization, 8, 324 (1998).

28. J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones,” Optimization Methods and Software, 11 & 12, 625
(1999).

29. M. J. Todd, “Semidefinite optimization,” Acta Numerica, 10, 515 (2001).

30. K. C. Toh, “A note on the calculation of step-lengths in interior-point
methods for semidefinite programming,” Computational Optimization and
Applications, 21, 301 (2002).

31. M. J. Todd, K. C. Toh and R. H. Tütüncü, “SDPT3 – a MATLAB software
package for semidefinite programming, version 1.3,” Optimization Methods
and Software, 11 & 12, 545 (1999).

32. L. Vandenberghe and S. Boyd, “Positive-Definite Programming,”
in J. R. Birge and K. G. Murty (Eds.), Mathematical Programming: State
of the Art 1994, University of Michigan, 1994.

33. H. Waki, S. Kim, M. Kojima and M. Muramatsu, “Sums of squares and
semidefinite programming relaxations for polynomial optimization prob-
lems with structured sparsity,” Research Report B-411, Dept. of Mathe-
matical and Computing Sciences, Tokyo Institute of Technology (2004).

34. H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite
Programming, Theory, Algorithms, and Applications, Kluwer Academic
Publishers, Massachusetts, 2000.

35. M. Yamashita, K. Fujisawa and M. Kojima, “Implementation and Evalua-
tion of SDPA6.0 (SemiDefinite Programming Algorithm 6.0),” Optimiza-
tion Methods and Software, 18, 491 (2003).



30

36. M. Yamashita, K. Fujisawa and M. Kojima, “SDPARA: SemiDefinite Pro-
gramming Algorithm paRAllel version,” Parallel Computing, 29, 1053
(2003).


