半正定値計画法を用いた指定座屈荷重係数を有する トラスのトポロジー最適化

TOPOLOGY OPTIMIZATION OF TRUSSES FOR SPECIFIED MULTIPLE LINEAR BUCKLING LOAD FACTORS BY USING SEMIDEFINITE PROGRAMMING

寒野 善博 $,^{*1}$ 大崎 純 $,^{*2}$ 藤澤 克樹 $,^{*3}$ 加藤 直樹 *4

Yoshihiro KANNO, Makoto OHSAKI, Katsuki FUJISAWA and Naoki KATOH

An algorithm based on Semi-Definite Programming (SDP) is proposed for the truss topology optimization problem for specified linear buckling load factor, and optimal topologies of trusses are computed by using the Semi-Definite Programming Algorithm (SDPA). It is well known that optimizing structures for specified buckling load factor is difficult because of non-differentiability of the buckling load factor for the case of multimodal solutions. It is shown, in the examples, that the proposed algorithm is applicable to multimodal cases, and an optimal topology with five-fold buckling load factors is found without any difficulty.

Keywords:semidefinite programming, topology optimization, eigenvalue constraints, linear
buckling load factor, multiple eigenvalues
半正定値計画法,トポロジー最適化,固有値制約,線形座屈荷重係数,重複固有値

1 序

建築構造物は外力に対し,不安定現象を生じないように設計される必要がある.線形座屈荷重係数はこのような安定性の最も基本的な指標の1つであり,線形座屈荷重係数が指定値を下まわらないような設計解を得ることは構造設計の重要な課題の一つである.このため,線形座屈荷重係数を指定した構造物の最適設計問題に対して有効な解法を開発することは重要である.ところが本最適化問題の最適解では,座屈荷重係数が重複する場合が多いことが知られている¹⁾.この場合には,座屈荷重係数の設計変数に関する感度係数は不連続となり,従来用いられてきた勾配に基づく非線形計画法によって最適解を求めることは極めて困難である.このため,座屈荷重係数が多数重複する場合にも問題なく最適解を求めることができる手法は,著者らの知る限り存在しない.本論の目的は,座屈荷重係数の重複度が大きくなるような大規模構造物に対しても有効な最適化手法を提案することである.

線形座屈荷重係数を制約とした構造物の最適設計問題は,線形 固有値問題によって定式化できることが知られている²⁾.これを用 いて,体積一定の条件の下で離散構造物の線形座屈荷重係数を最大 化する手法がいくつか提案されている³⁻⁵⁾.中川ら⁶⁾は骨組構造物 の座屈荷重に着目した最適設計法を提案しているが,ここで扱わ れているのは全ての座屈モードに対応する座屈荷重係数の和の最 大化問題であり,最小座屈荷重係数が最大化されるわけではない.

Khot⁷⁾は線形座屈荷重係数を用いた定式化により得られた最適 設計解に対して,幾何学的非線形性を考慮した座屈解析を行なう と,その座屈荷重係数は指定値の半分以下になる場合があること を明らかにした.このため,幾何学的非線形性を考慮した最適設 計問題に対する研究がなされてきている^{8,9)}.野上ら¹⁰⁾は等価初 期不整という概念を用いた座屈荷重制約下での骨組構造物の最適 設計法を提案した.しかし野上らの手法では座屈モードをあらか じめ与える必要があり,大規模な構造物について適用することは極 めて困難である.スペース・フレームに対して幾何学的非線形解析 に基づく感度解析を用い,その形態を最適化する手法も提案され ている¹¹⁾.同様の感度解析法は,シェル構造物に対しても展開さ れている¹²⁾.Ohsaki and Nakamura¹³⁾は指定座屈荷重係数をパ ラメータとした区分的テイラー展開による最適設計法を提案した. しかし,極限点型の座屈荷重係数しか考慮していないため,分岐

*1 京都大学大学院工学研究科建築学専攻 大学院生 *2 京都大学大学院工学研究科建築学専攻 助教授 博士 (工 学)

³ 京都大学大学院工学研究科建築学専攻 助手 博士 (理学) Rese

Graduate Student, Dept. of Architecture and Architectural Systems, Kyoto Univ. Assoc. Prof., Dept. of Architecture and Architectural Systems, Kyoto Univ., Dr. Eng.

Research Assoc., Dept. of Architecture and Architectural Systems, Kyoto Univ., Dr. Sc. Prof., Dept. of Architecture and Architectural Systems, Kyoto Univ., Dr. Eng.

^{*4} 京都大学大学院工学研究科建築学専攻教授 工博

点型の座屈荷重係数が最小になる場合には最適解を得ることはで きない.Ohsaki et al.¹⁴⁾は,構造物と荷重が対称な系に非対称な 不整が存在する場合の,分岐点型の非線形座屈荷重係数の感度解 析法と最適化手法を提案した.以上の文献では,最適解で座屈荷 重係数が重複する場合については考察されていない.

Olhoff and Rasmussen¹⁵⁾は,線形座屈荷重係数を指定した最 適設計問題の最適解では,座屈荷重係数が重複する場合があること を示した.このような場合には,以上であげた文献のような座屈 荷重係数の重複を考慮しない定式化では,正しい最適解を得るこ とはできない. Sevranian *et al.*¹⁾は一般固有値問題の最小固有値 の最大化問題について,最適性必要条件を用いた解法を提案した. しかしこの手法では,設計変数である部材断面積の最小制限値制 約を組み込むことは困難である.実際,ここで扱われている例題 は最適解ですべての断面積が十分に大きな値になるような問題で あり,最小制限値制約を用いていない.このため,トポロジー最適 化問題のように最適解でいくつかの設計変数が最小制限値に近い 値になる問題では,最適解に収束しない.また,固有値問題を定 義する行列が変位などの状態変数の関数である場合については考 察していないため,不静定トラスなどへの適用可能性は明らかで はない. Rodrigues et al.¹⁶⁾は Clarke の劣勾配¹⁷⁾に基づき,ト ラスの線形座屈荷重係数を最大化する問題に対して,座屈荷重係 数の重複を考慮した局所最適性の必要条件を導いた.ただし,最 適化手法については論じられていないため,有効性は明らかでは ない. Ohsaki¹⁸⁾は,対称な構造物と荷重からなる離散系の極限点 型と分岐点型の非線形座屈荷重係数の感度解析法を提案した、そ して,小規模なトラスの例題において,座屈荷重係数が3つ重複 しても最適解に収束することを示している.しかし,重複度がよ り大きい場合や,大規模トラスに対する有効性は明らかではない. 座屈荷重係数の重複度の如何に関わらず最適解を得ることのでき る手法は,著者らの知る限り存在しない.

以上のように,座屈荷重係数を指定した大規模なトラスの最適 設計問題に対しては,座屈前変形を考慮しない場合でも,座屈荷重 係数の重複度が大きい場合に有効な解法は存在しない.また,座屈 前変形を考慮して最適化を行なうことは,計算量の問題から現実 的ではない.本論では,指定線形座屈荷重係数を有するトラスの トポロジー最適化問題に対して,半正定値計画法(Semi-Definite Programming, SDP)を用いることにより,座屈荷重係数が多数 重複するような大規模な構造物に対しても最適解を効率良く求め る手法を提案する.

2 半正定値計画法の概要

半正定値計画法は凸計画法に属する数理計画法の1つであり,線 形計画法や凸2次計画法などを含んでいるため,従来よりも広い 範囲の凸最適化問題を扱うことができる.このためSDPは,シス テム制御への応用,組合せ最適化問題に対する緩和問題など様々な 分野で注目されている¹⁹⁾.

構造物の最適化問題に対して SDP を応用した研究もいくつか なされてきている.著者らは,1次固有振動数制約下でのトラスの トポロジー最適化問題を SDP として定式化することで,最適解で 最小固有値(固有振動数)が多数重複する場合にも効率よく解を得 る手法を提案した²⁰⁾.また Ben-Tal and Nemirovski²¹⁾は,不確 定性を含んだ外力に対して外力仕事を最小化するようなトラスの トポロジーを求める問題を SDP として定式化している. SDPは一般に次の2つの問題の組として表される22).

$$\mathcal{P}: \min \left\{ \begin{array}{l} \sum_{i=1}^{m} b_{i}y_{i} \\ \text{s.t.} \quad \boldsymbol{X} = \sum_{i=1}^{m} \boldsymbol{F}_{i}y_{i} - \boldsymbol{F}_{0}, \\ \boldsymbol{X} \in \mathcal{S}^{n}, \quad \boldsymbol{X} \succeq \boldsymbol{O}. \end{array} \right\}$$

$$(1)$$

$$\mathcal{D}: \max \quad \mathbf{F}_{0} \bullet \mathbf{Z} \\ \text{s.t.} \quad \mathbf{F}_{i} \bullet \mathbf{Z} = b_{i}, \ (i = 1, \cdots, m), \\ \mathbf{Z} \in \mathcal{S}^{n}, \ \mathbf{Z} \succeq \mathbf{O}.$$
 (2)

ここで S^n は $n \times n$ 実対称行列の集合を表す.記号 $U \succeq O$ は $U \in S^n$ が半正定値であること,即ち U の固有値が全て 0 以上で あることを示す.また,記号 $U \bullet V$ は,U, $V \in S^n$ の (i, j) 成 分をそれぞれ U_{ij} , V_{ij} とすると,

$$\boldsymbol{U} \bullet \boldsymbol{V} = \sum_{i=1}^{n} \sum_{j=1}^{n} U_{ij} V_{ij}$$

で定義する. $U \bullet V$ は行列の内積と呼ばれる.問題 \mathcal{P} , \mathcal{D} において, $F_i \in S^n \ (i = 0, \cdots, m)$ は定数行列, $b = \{b_i\} \in R^m$ は定数ベクトル, $X \in S^n$, $Z \in S^n$ は変数行列, $y = \{y_i\} \in R^m$ は変数ベクトルである.

問題 \mathcal{P} の目的関数 $\sum_{i=1}^{m} b_i y_i$ と等式条件 $oldsymbol{X} = \sum_{i=1}^{m} oldsymbol{F}_i y_i - oldsymbol{F}_0$ は $oldsymbol{y}$ の線形な式, $oldsymbol{X} \succeq oldsymbol{O}$ は $oldsymbol{y}$ の非線形な条件である.つまり問題 \mathcal{P} は,変数 $oldsymbol{y}$ の線形な関数として定まる行列 $oldsymbol{X}$ が半正定値である。るという条件の下で, $\sum_{i=1}^{m} b_i y_i$ を最小化する問題である.

問題 \mathcal{P} を SDP の等式標準形の主問題, \mathcal{D} を双対問題と呼ぶ. 双対問題 \mathcal{D} は元の問題 \mathcal{P} を定義するデータ b, F_0 , F_i と同じデー タを用いて定義される問題である.主問題と双対問題の間には双 対定理と呼ばれる関係が成立することが知られており,この定理が SDP の理論の中核をなしている²²⁾.このため,主問題と双対問題 をひとまとめにして扱うことが多い.

SDP の主問題 \mathcal{P} と双対問題 \mathcal{D} の最適解を求める手法として, 主双対内点法と呼ばれる解法が提案されている.内点法は当初,線 形計画法に対する解法として提案され,近年めざましい発展を遂げ ている.特に主双対内点法は,従来の単体法(シンプレックス法) では解けないような大規模な線形計画法を解く手法²³⁾としてその 地位を確立しており,これが拡張されて SDP に対しても適用され ている²⁴⁾.主双対内点法では,主問題と双対問題の許容領域の内 部に定義された中心パスと呼ばれる曲線を考える.この中心パス は SDP の最適解に収束する滑らかな曲線であり,この曲線を数値 的に追跡することで最適解を得ることができる.主双対内点法を 用いると,問題のサイズの多項式時間で SDP の大域的最適解が得 られることが理論的に保証されている²⁴⁾.即ち,最適解を得るま でに必要な四則演算の回数は $n \ge m$ の多項式のオーダーで抑えら れ,問題のサイズが大きくなっても計算効率が著しく落ちることは ない.

本論では,主双対内点法に基づいたソフトウェア Semi-Definite Programming Algorithm (SDPA)²⁵⁾ を用いて SDP を解く.

3 最適設計問題の定式化

本節では,線形座屈荷重係数を指定したトラスの最適設計問題 を,対称行列の半正定値条件を制約とした数理計画法として定式

化する.この定式化は,次節において提案する,座屈荷重係数の感 度係数を用いない最適化手法の基礎をなすものである.

トラスの最適トポロジーを得るために,まず節点の位置を指定 し,それらの節点を接続する多くの部材を与える.これを初期トラ スと呼ぶ.そのような存在可能部材の中から不要であるものを取り 除くことにより,与えられた条件の下で最適なトポロジーを得る. このような手法は ground structure 法²⁶⁾として知られている.

設計荷重等に基づき,基準外力 $p \in R^{N^d}$ を定める.ただし N^d は変位の自由度である.荷重係数 Λ をパラメータとして,単調に 増加する比例載荷荷重 Λp を作用させる.このときに,正の線形 座屈荷重係数の下限値を与え,各部材断面積を設計変数として,構 造物の全部材体積を最小化する部材断面積を求める.その結果,断 面積が0となる部材を取り除くことで,最適トポロジーとそれに 対応する最適部材断面積を得る.

個材座屈に関する制約は,部材の細長比などに基づいて部材断 面積の最小制限値を設けることで考慮することができる.しかし, この場合には構造物のトポロジーは変化しない.トポロジーを最適 化するためには,断面積の最小制限値を0にする必要がある.以下 ではトポロジー最適化について考察するために最小制限値を0と し,個材座屈は考慮しない.

また,大規模トラスでは,座屈前変形を考慮して最適化を行な うことは,計算量が極めて多いために現実的ではない.実務におい ても,座屈耐力は線形座屈荷重係数に安全率を考慮することによっ て推定されることが多い.そこで本論では,座屈前変形の効果を 最初から考慮して最適化を行なう手法ではなく,大規模トラスに対 しても有効な最適化手法を提案する.本手法では,まず,構造物の 座屈前変形を無視して最適トポロジーおよび部材断面積を求める. この際に,SDPを用いることで,座屈荷重係数が多数重複する場 合にも効率良く解を得ることができる.このようにして得られた 解の非線形座屈荷重係数が指定値よりも小さい場合には,それに 応じた安全率を考慮する.断面積の最小制限値が0であることよ り,全ての部材断面積に安全率を乗じることで,指定値を有する設 計解を容易に得ることができる.

トラスの系剛性行列および系幾何剛性行列をそれぞれ $K, K_G \in S^{N^d}$ とおく.このとき,r次座屈モード $\Phi_r \in R^{N^d}$ および対応する線形座屈荷重係数 Λ_r $(r = 1, 2, \cdots, N^d)$ は次の固有値問題の解である.

$$(\boldsymbol{K} - \Lambda_r \boldsymbol{K}_G) \boldsymbol{\Phi}_r = \boldsymbol{0}.$$
 (3)

部材断面積および部材長を表すベクトルを $A = \{A_i\}, L = \{L_i\} \in R^{N^m}$ とおく.ただし N^m は部材数である.基準荷重と共にその載荷方向を決め,その正の方向の座屈荷重係数の下限値 $\overline{\Lambda} > 0$ を与える.負の方向の荷重に対する座屈は考慮しないため,座屈荷重係数に関する制約条件は $\Lambda_r \ge \overline{\Lambda}$ または $\Lambda_r < 0$ と書ける.従って最適設計問題は, A_i を変数として次式で与えられる.

$$TOP: \min \left\{ \sum_{i=1}^{N^m} A_i L_i \\ \text{s.t.} \quad \Lambda_r \ge \bar{\Lambda} \text{ or } \Lambda_r < 0, \\ (r = 1, 2, \cdots, N^d), \\ A_i \ge 0, \quad (i = 1, 2, \cdots, N^m). \right\}$$
(4)

問題 TOP の線形座屈荷重係数に関する制約式は,次のように 書くことができる.

$$\Lambda_r \ge \bar{\Lambda} \text{ or } \Lambda_r < 0 \iff \frac{1}{\Lambda_r} \le \frac{1}{\bar{\Lambda}}.$$
 (5)

式(3)の両辺に左から Φ_r^T を乗じ, Kが正定値であることより $\Phi_r^T K \Phi_r > 0, \Lambda_r \neq 0$ に注意して整理すると,

$$\frac{\boldsymbol{\Phi}_{r}^{T}\boldsymbol{K}_{G}\boldsymbol{\Phi}_{r}}{\boldsymbol{\Phi}_{r}^{T}\boldsymbol{K}\boldsymbol{\Phi}_{r}} = \frac{1}{\Lambda_{r}} \leq \frac{1}{\bar{\Lambda}}.$$
(6)

従って $r = 1, 2, \cdots, N^d$ に対して次式が成り立つ.

$$\boldsymbol{\Phi}_{r}^{T}\left(rac{1}{ar{\Lambda}}\boldsymbol{K}-\boldsymbol{K}_{G}
ight)\boldsymbol{\Phi}_{r}\geq0.$$

任意の固有モードに対して左辺が非負であるので,

$$\frac{1}{\bar{\Lambda}}\boldsymbol{K}-\boldsymbol{K}_{G}\succeq\boldsymbol{O}.$$

以上より,問題 TOP は次の問題 TOP'と同値である.

$$TOP': \min \left\{ \begin{array}{l} \sum_{i=1}^{N^m} A_i L_i \\ \text{s.t.} \quad \frac{1}{\overline{\Lambda}} \mathbf{K} - \mathbf{K}_G \succeq \mathbf{O}, \\ \mathbf{A} \ge \mathbf{0}. \end{array} \right\}$$
(7)

基準外力 p が作用することで生じる変位および第i部材の軸 力を $u(A) \in R^{N^d}$, $N(A) = \{N_i(A)\} \in R^{N^m}$ とする.即ち, $B \in R^{N^m \times N^d}$ を軸力-変位関係を与える行列とすると,次式が成 り立つ.

$$Ku = p, \quad Bu = N. \tag{8}$$

行列 K, K_G は、トラスの形状に固有な定行列 $K_i, K_{Gi} \in S^{N^d}$ ($i = 1, 2, \dots, N^m$)を用いて次のように表される.

$$\boldsymbol{K} = \sum_{i=1}^{N^m} A_i \boldsymbol{K}_i, \quad \boldsymbol{K}_G = \sum_{i=1}^{N^m} N_i(\boldsymbol{A}) \boldsymbol{K}_{Gi}.$$
(9)

問題 TOP' に(9) を代入することで次の問題 P を得る.

$$P: \min \sum_{i=1}^{N^{m}} A_{i}L_{i}$$
s.t.
$$\boldsymbol{X} = \frac{1}{\overline{\Lambda}} \sum_{i=1}^{N^{m}} A_{i}\boldsymbol{K}_{i}$$

$$-\sum_{i=1}^{N^{m}} N_{i}(\boldsymbol{A})\boldsymbol{K}_{G_{i}},$$

$$\boldsymbol{X} \succeq \boldsymbol{O}, \quad \boldsymbol{A} \ge \boldsymbol{0}.$$

$$(10)$$

4 最適化手法

問題 P において,不静定トラスでは軸力 $N_i(A)$ は断面積 A の 非線形な関数である.問題 P は A の非線形な関数として定められ る行列 X が半正定値である,という非凸な制約を含むため,SDP の等式標準形 \mathcal{P} では直接表現することのできない非凸型の最適化 問題である.従って,問題 P に対して内点法やその他の既往の非 線形計画法を直接適用して解くことは困難であり,座屈荷重係数が 重複する場合にも有効な解法はこれまでに提案されていない.

本論では,軸力 $N_i(A)$ を A の線形な関数として繰り返し近似 する.即ち上添字 (k) を繰り返し数とし, $A = A^{(k)}$ が得られて いるとき, $N_i(A)$ を次の関数 $\tilde{N}_i^{(k)}(A)$ で近似する.

手法 (a):
$$\tilde{N}_{i}^{(k)}(\boldsymbol{A}) = N_{i}(\boldsymbol{A}^{(k)}) + \sum_{j=1}^{N^{m}} \frac{\partial N_{i}}{\partial A_{j}} (A_{j} - A_{j}^{(k)}),$$
 (11)

手法 (b):
$$\tilde{N}_i^{(k)}(\boldsymbol{A}) = N_i(\boldsymbol{A}^{(k)}).$$
 (12)

手法 (a) は , $N_i(A)$ の線形近似である . 計算効率や収束性の比較 のために , 手法 (b) の近似も同時に考察する . ここで $\frac{\partial N_i}{\partial A_j}$ は軸力 の感度係数であり , (8) を微分して得られる(13), (14) より容易に 求められる .

$$\frac{\partial N}{\partial A_j} = \boldsymbol{B}_j \boldsymbol{u} + \boldsymbol{B} \frac{\partial \boldsymbol{u}}{\partial A_j},\tag{13}$$

$$\frac{\partial \boldsymbol{u}}{\partial A_j} = -\boldsymbol{K}^{-1} \boldsymbol{K}_j \boldsymbol{u}. \tag{14}$$

ただし行列 $B_j = \frac{\partial B}{\partial A_j}$ はトラスの形状に固有の定数行列である. 近似(11)または(12)を用いると,問題 P は次の SDP に近似される.

$$\left. \begin{array}{l} \mathbf{P}^{(k)}: & \min \quad \sum_{i=1}^{N^m} A_i L_i \\ \text{s.t.} \quad \mathbf{X} = \sum_{i=1}^{N^m} A_i \mathbf{F}_i - \mathbf{F}_0, \\ \mathbf{X} \succeq \mathbf{O}, \quad \mathbf{A} \ge \mathbf{0}. \end{array} \right\}$$
(15)

ただし F_i $(i = 1, 2, \cdots, N^m), F_0 \in S^{N^d}$ は次式で定義される 定数行列である.

手法 (a) :

$$\boldsymbol{F}_{i} = \frac{1}{\overline{\Lambda}} \boldsymbol{K}_{i} - \sum_{j=1}^{N^{M}} \frac{\partial N_{j}(\boldsymbol{A}^{(k)})}{\partial A_{i}} \boldsymbol{K}_{Gj}, \qquad (16)$$

$$\boldsymbol{F}_{0} = \sum_{i=1}^{N^{m}} \left\{ N_{i}(\boldsymbol{A}^{(k)}) - \sum_{j=1}^{N^{m}} \frac{\partial N_{i}(\boldsymbol{A}^{(k)})}{\partial A_{j}} A_{j}^{(k)} \right\} \boldsymbol{K}_{Gi}.$$

手法 (b):

$$\boldsymbol{F}_{i} = \frac{1}{\Lambda} \boldsymbol{K}_{i}, \quad \boldsymbol{F}_{0} = \sum_{i=1}^{N^{m}} N_{i}(\boldsymbol{A}^{(k)}) \boldsymbol{K}_{Gi}.$$
(17)

問題 P を線形近似した問題 P^(k) は SDP の等式標準形 P であ るので,主双対内点法を用いると多項式時間で解を得ることがで きる.従って,トラスの規模が大きくなっても計算量が著しく増え ることはない.本論では SDPA を用いて問題 P^(k) を解く.ここ で得られた P^(k) の最適解 A を用いて $A^{(k+1)} \leftarrow A$ とする.(11) または(12) で $k \leftarrow k + 1$ とし, $A^{(k+1)}$ を用いて N(A) を再度 近似して,問題 P^(k+1) を SDPA を用いて解く.このように問題 P を解く代わりに,これを SDP として逐次近似した問題 P^(k) を 解くことにより最適設計解を得る。 ϵ を十分に小さな正の実数とし て,次の条件を終了条件とする.

$$\boldsymbol{\mathcal{L}}^{(k)} = \| \tilde{\boldsymbol{N}}^{(k)}(\boldsymbol{A}^{(k+1)}) - \boldsymbol{N}(\boldsymbol{A}^{(k+1)}) \| \le \bar{\epsilon}.$$
(18)

本手法では,座屈荷重係数の感度係数を用いないため,最適解 で座屈荷重係数が多数重複する場合にも問題なく解を得ることが できる.また,本手法では繰り返し SDP を解く必要があるが,1 回の反復ごとに解く SDP に関してはその収束が保証されている.

5 例題

本手法の有効性を例題を通じて検討する.以下の例題では,部 材は鋼材としてヤング係数を 205.8 GPa とする.数値実験には DEC Alpha (CPU 21164 600MHz: 1GB メモリ)を用いる. 5.1.132 部材球形シェル状トラス

図 1 の 132 部材球形シェル状トラスに対して,手法 (a) を適用 する.底部の半径は 800.0 cm,半開角は 60°であり,基準外力と して頂点の節点に鉛直下向きに 9.8 kN を与える.このような外力 を与えるのは,座屈荷重係数が多数重複する解を得ることで手法の 有効性を検証するためである.指定座屈荷重係数を $\bar{\Lambda} = 1000 \text{ と}$ する.即ち,正の最小座屈荷重を $9.8 \times 10^3 \text{ kN}$ とする.初期解は 全ての部材断面積を 20.0 cm^2 として与える.

手法 (a) により得られた最適解を図 2 に示す.ただしこの図は, 各部材の太さが得られた断面積に比例するように描いたものである. $\bar{\epsilon} = 10^{-3}$ とすると,本手法で最適解を得るまでに SDP を解 く回数は 4 回であり,その最適化の過程と結果を表 1 に示す.た だし表中の Vol.は目的関数である総部材体積, $\Lambda_1, \Lambda_2, \dots, \Lambda_5$ は 正の座屈荷重係数を小さい順に並べた値を表す.また,CPU 時間 は問題 $P^{(k)}$ を1回解くのに要する時間を示す. $\epsilon^{(k)}$ は(18)で定 義される量である.最適解での座屈荷重係数の重複度は5 である ため,既往の手法で最適解を得ることは極めて困難である.重複 している座屈荷重係数に対する座屈モードは,極限点型が1つと

図 1 132 部材球形シェル状トラス (111 自由度)

図 2 球形シェル状トラスの最適解:手法 (a)

表 1 球形シェル状トラスの結果:手法 (a)

k	Vol. $(\times 10^5 \text{cm}^3)$	Λ_1	Λ_2	Λ_3	Λ_4	Λ_5	CPU (sec.)	$\epsilon^{(k)}$
0	6.89260	281.647	290.465	290.465	433.246	964.776		
1	32.7587	998.711	998.711	999.760	1020.42	1020.42	41.6	8.8
2	2.75731	999.990	999.990	1000.00	1000.07	1000.07	41.7	$1.6{\times}10^{-2}$
3	2.75731	1000.00	1000.00	1000.00	1000.00	1000.00	41.7	1.6×10^{-4}

k	Vol. $(\times 10^4 \text{cm}^3)$	Λ_1	Λ_2	CPU (sec.)	$\epsilon^{(k)}$	μ
0	12.8581	526.554	4394.21			
1	6.31683	811.220	1000.03	6.8	2.9	
2	6.31325	999.990	1011.52	7.6	4.1×10^{-1}	1.0
3	6.31308	999.990	1189.53	6.4	1.4	1.0
4	6.31306	999.990	1166.61	6.4	5.4×10^{-3}	0.5
5	6.31303	1000.00	1290.59	6.4	6.0×10^{-3}	0.5
46	6.31267	1000.00	1265.21	6.4	3.7×10^{-4}	10.0

表 2 塔状平面トラスの結果:手法 (a)

表 3 塔状平面トラスの結果:手法 (b)

k	Vol. $(\times 10^4 \text{cm}^3)$	Λ_1	Λ_2	CPU (sec.)	$\epsilon^{(k)}$	μ
0	12.8581	526.554	4394.21			
1	6.31543	999.530	1202.73	0.7	4.5×10^{-1}	
2	6.31274	999.970	1190.04	0.7	$1.9{\times}10^{-2}$	
3	6.31292	1000.00	1186.22	0.7	5.2×10^{-4}	
4	6.31294	999.900	1188.30	0.8	1.0×10^{-1}	
5	6.63135	1000.04	1186.21	0.8	2.3×10^{-1}	

分岐点型が4つである.構造物の対称性を考慮すると分岐点型の モードは2つずつに分類できるので,3種類のモードが重複して いることになる.最適解で分岐点型荷重が最小の座屈荷重になる ので,Ohsaki and Nakamura¹³⁾の手法では解を求めることはで きない.また,座屈荷重係数の重複度の多少に関わらずに解を得 ることができる最適化手法は,著者らの知る限り提案されていな い.Ohsaki¹⁸⁾は非線形座屈荷重係数が3つ重複する例を小規模な トラスで示したが,本稿の例題のような実用的な規模のトラスに 対する有効性は明らかではない.

一方,手法(b)を用いた場合に収束までにSDPを解く回数は 17回であり,得られた解は手法(a)によるものとほぼ同じである. 従ってこの例題では,軸力をその感度係数を用いて線形関数として 近似することにより,手法(b)よりも計算時間と繰り返し数の点 で効率的に解が得られることが分かる.

本論の手法は線形座屈荷重係数を用いて定式化されているため, 移動座標系を用いた非線形釣合形状解析²⁷⁾を行なって,これらの結 果を検討した.最適解の非線形座屈荷重係数は,手法(a),(b)とも に 215.7 である.そこで,非線形座屈荷重係数が指定値 1000 に近 い解を得るには,例えば安全率を $\alpha = 5$ などとし, $\bar{\Lambda} = 1000 \times \alpha$ とおいた場合の問題 P の最適解を得ればよい.問題 P では断面積 の最小制限値を0としているため,最適化問題を解き直す必要は なく,ここで得られた最適解の各部材断面積に α を乗じることで $\bar{\Lambda} = 1000 \times \alpha$ に対する最適解を簡単に得ることができる.一般 に,図1のような偏平な構造物では,座屈前変形の影響により実 際の座屈荷重係数は指定値よりも小さい値になる⁷⁾.従ってこのよ うな形状のトラスでは,本手法を用いるには数倍の安全率を考慮 する必要がある.このようにして得られる解は,最初から座屈前 変形の効果を厳密に考慮した場合の最適解と一致する保証はない. しかし,大規模または中規模のトラスに対して,座屈前変形を考 慮して最適化を行なうことは計算量の面から現実的ではないので, 本手法を用いるのが実用的である.

5.2. 101 部材塔状平面トラス

図 3 に示す塔状平面トラスに対して手法 (a), (b) を用いて最適 解を求めた.トラスの水平および鉛直方向部材の長さはそれぞれ 100.0 cm, 200.0 cm である.基準外力として最上層の中央の節点 に鉛直下向きに 9.8 kN を作用させ, $\overline{\Lambda} = 1000$ とする.また,初 期解は全ての部材断面積を 5.0 cm² として与える.この例題では, 問題 $P^{(k)}$ において次の move limit を設け,変数 A の定義域を軸 力の近似式(11) の精度が信頼できる範囲に限定する.

$$A_{i}^{(k)} - \frac{\mu}{|s_{i}^{(k)}|} \le A_{i} \le A_{i}^{(k)} + \frac{\mu}{|s_{i}^{(k)}|}$$
$$s_{i}^{(k)} = \sum_{i=1}^{N^{m}} \frac{\partial N_{j}(\mathbf{A}^{(k)})}{\partial A_{i}}.$$

つまり,軸力の感度が大きい部材については,設計変数の定義域をより小さくする.ここで $\mu > 0$ は定義域の大きさを決めるパラメータであり,適切な μ の値を選ぶことによって,最適化の過程での解の発散を防ぐことができる.

手法 (a), (b) それぞれの結果を表 2, 表 3 に, 手法 (a) により 得られた解を図 4(a) に示す.この例題では手法 (b) は 6 回以上繰 り返しても収束せず,最適解を求めることはできない.手法 (a) で 得られた最適解では固有値は重複しない.

ここで用いた SDPA は,計算を効率的に行なうために疎行列 のもつ性質を利用している²⁸⁾.即ち,問題 \mathcal{P} , \mathcal{D} の係数行列 F_i

図 3 塔状平面トラス (101 部材,42 自由度) 図 4 塔状平面トラスの最適解:手法 (a)

 $(i = 0, 1, \dots, N^m)$ の成分のほとんどが 0 である場合には,そう でない場合に比べて計算の効率が良い.一方で行列 K_i, K_{Gi} はそ のほとんどの成分が 0 である疎行列である.従って問題 $P^{(k)}$ の係 数行列は,手法 (a) で用いる(16) よりも,手法 (b) で用いる(17) の方がより疎である.このため,SDPを1回解くのに要する計算 時間は手法 (b) の方が短い.しかし,手法 (a) で得られる解は最 適設計問題 P の局所最適解であるための必要条件を満たすという 利点がある.本例題では手法 (a) に対して move limit を設けてい るが,最終的に得られた解では μ を大きくしても解が変化しない ため,move limit はアクティブでないことが分かる.従って,こ の解は問題 P の局所最適性の必要条件を満たしている.これに比 べて,手法 (b) を用いて得られる解は一般にはこの条件を満たさ ない.それに加えて,本例題では手法 (b) は収束しない.なお,手 法 (a) を用いて設計解を得るには,実用的には 5 回程度の繰り返 しで十分である.

最適解に対して非線形釣合経路解析を行なった結果,非線形座 屈荷重係数は手法(a)で1044.82である.即ち,この例題では非 線形座屈荷重係数は指定値にほぼ一致する.ここで扱ったような塔 状トラスでは一般に,座屈前変形を考慮した座屈荷重係数と線形 座屈荷重係数との差は小さいことが知られている.従って,本手法 を用いることで,非線形座屈荷重係数が指定値にほぼ一致する解 が得られる.

- 6 結論
 - 1. 線形座屈荷重係数の制約下でのトラスのトポロジー最適化問 題を,行列の半正定値条件を制約にもつ数理計画法として定 式化した.
 - 2. 1. の最適設計問題を繰り返し SDP に近似することで最適解 を得るアルゴリズムを提案した.
 - 3. 提案したアルゴリズムに基づき,主双対内点法のソフトウェ アを用いて立体トラスおよび平面トラスの例題を解き,その

最適なトポロジーおよび部材断面積を得た.

- 4. 最適解で固有値が多数重複する場合にも、本手法を用いると 困難なく解を得ることができることを例証した。
- 5. 軸力を部材断面積の線形関数として近似することにより、計算効率が非常に良くなる場合があることを示した.また、軸力の感度係数を用いない手法(b)では、最適解に収束しない場合があることを示した。

参考文献

- A.P. Seyranian, E. Lund and N. Olhoff, Multiple eigenvalues in structural optimization problems, *Struct. Optim.*, 8, pp. 207–227, 1994.
- [2] W. Prager and J.E. Taylor, Problems of optimal structural design, J. Appl. Mech., 35, pp. 102–106, 1968.
- [3] R. Levy, Optimization for overall stability, in *Proceedings of a session at Structures Congress*, F.Y. Cheng, ed., ASCE, pp. 86–100, 1986.
- [4] N.S. Khot, V.B. Venkayya and L. Berke, Optimum structural design with stability constraints, *Int. J. Numer. Methods Engrg.*, **10**, pp. 1097–1114, 1976.
- [5] C.-C. Lin and I.-W. Liu, Optimal design based on optimality criterion for frame structures including buckling constraint, *Comput. Struct.*, **31**, pp. 535–544, 1989.
- [6] 中川建治,高木録郎,前田昌克,骨組構造物の座屈荷重最大と する最適設計法に対する一手法,土木学会年次学術講演梗概 要集,pp. 1180–1181, 1993.
- [7] N.S. Khot, Nonlinear analysis of optimized structure with constraints on system stability, AIAA J., 21, pp. 1181–1186, 1983.
- [8] M.P. Kamat, N.S. Khot and V.B. Venkayya, Optimization of shallow trusses against limit point instability, *AIAA J.*, **22**, pp. 403–408, 1984.
- [9] R. Levy and H.-S. Perng, Optimization for nonlinear stability, *Comput. Struct.*, 30, pp. 529–535, 1988.
- [10] 野上邦栄,成田信之,杉本博之,弾性有限変位解析に基づく 骨組構造の最適断面設計,土木学会年次学術講演梗概要集, pp. 806-807, 1994.

- [11] 陳沛山,川口衛,スペース・フレームの最大座屈荷重形態,日本建築学会構造系論文集,489,pp. 41-46, 1996.
- [12] 銭志偉,半谷裕彦,シェル構造の座屈荷重の感度解析と最小重 量設計法,日本建築学会大会学術講演梗概集,pp. 1009–1010, 1997.
- [13] M. Ohsaki and T. Nakamura, Optimum design with imperfection sensitivity coefficients for limit point loads, *Struct. Optim.*, 8, pp. 131–137, 1994.
- [14] M. Ohsaki, K. Uetani and M. Takeuchi, Optimization of imperfection-sensitive symmetric systems for specified maximum load factor, *Comput. Meth. Appl. Mech. Engng.*, 166, pp. 349–362, 1998.
- [15] N. Olhoff and S.H. Rasmussen, On single and bimodal optimum buckling loads of clamped columns, *Int. J. Solids Structures*, **13**, pp. 605–614, 1977.
- [16] H.C. Rodrigues, J.M. Guedes and M.P. Bendsøe, Necessary conditions for optimal design of structures with a nonsmooth eigenvalue based criterion, *Struct. Optim.*, 9, pp. 52–56, 1995.
- [17] A.S. Lewis, Nonsmooth analysis of eigenvalues, Math. Program., 84, pp. 1–24, 1999.
- [18] M. Ohsaki, Optimization of geometrically non-linear symmetric systems with coincident critical points, *Int. J. Numer. Methods Engng*, 48, pp. 1345–1357, 2000.
- [19] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38, pp. 49–95, 1996.
- [20] M. Ohsaki, K. Fujisawa, N. Katoh and Y. Kanno, Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints, *Comput. Meth. Appl. Mech. Engng.*, 180, pp. 203–217, 1999.

- [21] A. Ben-Tal and A. Nemirovski, Robust truss topology optimization via semidefinite programming, SIAM J. Optim., 7, pp. 991–1016, 1997.
- [22] 小島政和, 半正定値計画法とその組合せ最適化への応用, 離散 構造とアルゴリズム 5, 近代科学社, pp. 203-249, 1998.
- [23] M. Kojima, S. Mizuno and A. Yoshise, A primaldual interior point algorithm for linear programming, in *Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods*, N. Megiddo, ed., Springer-Verlag, New York, pp. 29–47, 1989.
- [24] M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problems, *SIAM J. Optim.*, 7, pp. 86–125, 1997.
- [25] K. Fujisawa, M. Kojima and K. Nakata, SDPA (Semidefinite Programming Algorithm) –User's Manual–., *Tech. Report B-308*, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan, 1998.
- [26] U. Kirsch, Optimal topologies of truss structures, Appl. Mech. Rev., 42, pp. 223–239, 1989.
- [27] 成岡昌夫, 中村恒善, 骨組構造解析法要覧, 培風館, 1976.
- [28] K. Fujisawa, M. Kojima and K. Nakata, Exploiting sparsity in primal-dual interior-point methods for semidefinite programming, *Math. Program.*, **79**, pp. 235–253, 1997.