
Exploiting sparsity in semidefinite programming via
matrix completion II: implementation and numerical

results

Kazuhide Nakata∗ Katsuki Fujisawa† Mituhiro Fukuda‡

Masakazu Kojima§ Kazuo Murota¶

Abstract

In Part I of this series of articles, we introduced a general framework of exploiting
the aggregate sparsity pattern over all data matrices of large scale and sparse semidefi-
nite programs (SDPs) when solving them by primal-dual interior-point methods. This
framework is based on some results about positive semidefinite matrix completion, and
it can be embodied in two different ways. One is by a conversion of a given sparse
SDP having a large scale positive semidefinite matrix variable into an SDP having
multiple but smaller positive semidefinite matrix variables. The other is by incor-
porating a positive definite matrix completion itself in a primal-dual interior-point
method. The current article presents the details of their implementations. We in-
troduce new techniques to deal with the sparsity through a clique tree in the former
method and through new computational formulae in the latter one. Numerical results
over different classes of SDPs show that these methods can be very efficient for some
problems.

Keywords: Semidefinite programming; Primal-dual interior-point method; Matrix com-
pletion problem; Clique tree; Numerical results.

∗Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565
Japan (nakata@zzz.t.u-tokyo.ac.jp).

†Department of Architecture and Architectural Systems, Kyoto University, Kyoto 606-8501 Japan
(fujisawa@is-mj.archi.kyoto-u.ac.jp).

‡Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-
Okayama, Meguro-ku, Tokyo 152-8552 Japan (mituhiro@is.titech.ac.jp). The author was supported
by The Ministry of Education, Culture, Sports, Science and Technology of Japan.

§Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-
Okayama, Meguro-ku, Tokyo 152-8552 Japan (kojima@is.titech.ac.jp).

¶Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan
(murota@kurims.kyoto-u.ac.jp).

1

1 Introduction

In recent years, semidefinite programs (SDPs) have appeared in several fields such as system
and control theory, finance, architecture, etc. It is also known that SDP relaxations of
difficult optimization problems such as combinatorial optimization problems, nonconvex
quadratic programs, etc., provide with good bounds for their objective values. In most of
the cases, their SDP formulations become large scaled and sparse.

This article is a continuation of Part I [8] in which we presented the basic theory of two
new methods to exploit the sparsity structure of large scale SDPs based on some funda-
mental results about positive semidefinite matrix completion [9, 11]. Here, we focus on the
implementation details of the proposed conversion method and completion method [8], and
provide with some numerical results over different classes of SDPs for which they are very
effective.

The sections of this article are organized as follows. Section 2 gives the basic definitions
and revises some results of Part I [8]. In particular, subsection 2.2 can be viewed as a
preprocessing of sparse SDPs for the conversion and completion methods. Section 3 gives
a brief glance at the standard primal-dual interior-point method for SDPs. The conversion
method is presented in details in section 4, together with a heuristic algorithm to obtain
a “good” conversion. The completion method is detailed in section 5 where we utilize
new computational formulae to exploit the sparse structure of SDPs. The proposed two
methods and the standard primal-dual interior-point method for SDPs are compared in
terms of required flops and memory in subsection 5.4. Finally, we devote section 6 to some
numerical experiments over five different classes of SDPs.

2 Sparse semidefinite programs and investigations into

their sparse structure

This section connects the sparse structure of SDPs with the matrix completion theory
which in turn is deeply related with chordal graphs. We start subsection 2.1 by defining
the standard equality form SDP which is assumed to be sparse, and later we discuss how
to obtain a positive (semi)definite matrix completion of one of its variables. Subsection 2.2
presents properties of chordal graphs and clique trees, and subsection 2.3 recalls the sparse
clique-factorization formula [8] utilized in the completion method (section 5). In practice,
subsection 2.2 can be viewed as a preprocessing of SDPs in order to exploit their sparsity
in the conversion method (section 4) and in the completion method (section 5).

2.1 Relations among semidefinite programming, matrix comple-

tion and chordal graphs

Let Sn denote the space of n × n symmetric matrices with the Frobenius inner product
X • Y =

∑n
i=1

∑n
j=1 XijYij for X, Y ∈ Sn. We will use the notation X ∈ Sn

+ (Sn
++) to

designate that X ∈ Sn is positive semidefinite (definite). Given Ap ∈ Sn (p = 0, 1, . . . , m)
and b ∈ Rm, we define the standard equality form SDP by

2

minimize A0 • X
subject to Ap • X = bp (p = 1, 2, . . . , m), X ∈ Sn

+

}
, (1)

and its dual by

maximize

m∑
p=1

bpzp

subject to
m∑

p=1

Apzp + Y = A0, Y ∈ Sn
+

. (2)

In this article, we are mostly interested in solving sparse SDPs where the data matrices
Ap (p = 0, 1, . . . , m) are sparse, and the dual matrix variable

Y = A0 −
m∑

p=1

Apzp

inherits the sparsity of Ap’s.
In order to represent the sparse structure of an SDP, we introduce the aggregate sparsity

pattern of the data matrices:

E = {(i, j) ∈ V × V : [Ap]ij �= 0 for some p ∈ {0, 1, 2, . . . , m}}.

Here V denotes the set {1, 2, . . . , n} of row/column indices of the data matrices A0, A1, . . . ,
Am, and [Ap]ij denotes the (i, j)th element of Ap ∈ Sn. It is also convenient to identify the
aggregate sparsity pattern E with the aggregate sparsity pattern matrix A having unspecified
nonzero numerical values in E and zero otherwise.

For every pair of subsets S and T of V , we use the notation XST for the submatrix
obtained by deleting all rows i /∈ S and all columns j /∈ T . In accordance with the ideas
and definitions presented in [8], consider a collection of nonempty subsets C1, C2, . . . , C� of
V satisfying

(i) E ⊆ F ≡
�⋃

r=1

Cr × Cr;

(ii) Any partial symmetric matrix X̄ with specified elements X̄ij ∈ R ((i, j) ∈ F) has a
positive semidefinite (definite) matrix completion (i.e., given any X̄ij ∈ R ((i, j) ∈ F),
there exists a positive semidefinite (definite) X ∈ Sn such that Xij = X̄ij ∈ R ((i, j) ∈
F)) if and only if the submatrices X̄CrCr ∈ SCr

+ (X̄CrCr ∈ SCr
++) (r = 1, 2, . . . , �).

Here SCr
+ (SCr

++) denotes the set of #Cr × #Cr positive semidefinite (definite) symmetric
matrices with elements specified in Cr ×Cr, and #Cr denotes the number of elements of Cr.
We can assume without loss of generality C1, C2, . . . , C� to be maximal sets with respect to
set inclusion.

Let G(V, F ◦) be an undirected graph with vertex set V and edge set F ◦ = F\{(i, i) :
i = 1, 2, . . . , n} where F is given in (i). Henceforth, we will call the subset Cr of the vertex
set V a clique whenever it induces a clique of G(V, F ◦). Then K = {C1, C2, . . . , C�} in (i)
will be the family of all maximal cliques of G(V, F ◦). Under this notation, it is known that

3

(ii) holds if and only if the graph G(V, F ◦) is chordal [9, Theorem 7] (cf., also [8, Theorem
2.3]), where a graph is said to be chordal if every cycle of length ≥ 4 has a chord (an edge
connecting two nonconsecutive vertices of the cycle).

Henceforth, we always assume that G(V, F ◦) denotes a chordal graph. We call F an
extended sparsity pattern of E, and G(V, F ◦) a chordal extension or filled graph of G(V, E◦),
respectively.

2.2 Chordal extensions and clique tree properties

One of the key ideas to efficiently solve SDPs via positive (semi)definite matrix completion
is to make the best use of the nice property (ii) to diminish the number of unknowns in
the primal matrix variable X. Therefore, it is extremely important to determine a chordal
extension G(V, F ◦) of G(V, E◦) which has as small a number of edges as possible since
this number directly affects the performance of the conversion method (section 4) and the
completion method (section 5).

It is known that a chordal extension can be obtained easily if we perform a symbolic
Cholesky factorization to the aggregate sparsity pattern matrix A according to any re-
ordering of the vertex set V = {1, 2, . . . , n}. Unfortunately, the problem of finding such an
ordering that minimizes the fill-in is NP complete. Hence, it seems reasonable at least in
practice to employ some existing heuristic methods such as the multilevel nested dissection
[12] and/or the minimum degree [1] to obtain an ordering which possibly produces lesser
fill-in. Once we have an ordering, a simple symbolic Cholesky factorization according to
this ordering provides us with a chordal extension G(V, F ◦).

Chordal graphs are well-known structures in graph theory. Among their nice properties,
it is known that a graph is chordal if and only if we can construct a clique tree with vertex
set equals to the family of all maximal cliques of the same graph (see [2] and references
therein for definitions and results that follow). Although there are several equivalent ways
to define clique trees, we employ the following one based on the clique-intersection property
(CIP) which will be useful throughout the article.

Let K = {C1, C2, . . . , C�} be any family of maximal subsets of V = {1, 2, . . . , n}. Let
T (K, E) be a tree formed by vertices from K and edges from E ⊆ K × K. T (K, E) is called
a clique tree if it satisfies the clique-intersection property (CIP):

(CIP) For each pair of vertices Cr and Cs ∈ K, the set Cr ∩Cs is contained in every vertex
on the (unique) path connecting Cr and Cs in the tree.

In particular, we can construct a clique tree T (K, E) from the chordal extension G(V, F ◦)
if we take K = {C1, C2, . . . , C�} as the family of all maximal cliques of G(V, F ◦), and define
appropriately the edge set E ⊆ K ×K for T (K, E) to satisfy the CIP.

Clique trees can be computed efficiently from a chordal graph [2, 20] or even faster
for a special subclass of them [14]. We observe further that clique trees are not uniquely
determined for a given chordal graph.

A topological ordering of the vertices in any rooted tree is an ordering of the vertices
which numbers each child before its parent. Once we obtained a clique tree T (K, E) from
the chordal extension G(V, F ◦), we can choose an arbitrary clique as its root. Then, any
topological ordering of its maximal cliques K = {C1, C2, . . . , C�} satisfies the running inter-
section property (RIP), i.e., for each r = 1, 2, . . . , � − 1 it holds that

4

(RIP) ∃s ≥ r + 1 : Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ C�) � Cs.

Now, we present another property which characterizes chordal graphs. An ordering
(1, 2, . . . , n) of the vertices of a graph G(V, E◦) is called a perfect elimination ordering
(PEO) if for each i = 1, 2, . . . , n− 1, the subset of vertices Adj(i)∩ {i, i + 1, . . . , n} induces
a clique in G(V, E◦), where Adj(i) = {j ∈ V : (i, j) ∈ F ◦}. It is also known that a graph is
chordal if and only if there exists a PEO for it.

Finally, we mention that an ordering (C1, C2, . . . , C�) of the maximal cliques of a chordal
graph G(V, F ◦) which satisfies the RIP induces a PEO of the vertices of the graph as follows.
For each r = 1, 2, . . . , �, we number the vertices in Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ C�) with∑r−1

s=1 |Ss|+ 1,
∑r−1

s=1 |Ss|+ 2, . . . ,
∑r−1

s=1 |Ss|+ |Sr|. We then obtain a PEO of the vertices, in
which the vertices in Sr are given consecutive numbers for each r [8].

There are several reasons why we introduce clique trees. As we have mentioned, the
existence of clique trees is inherent in chordal graphs. In the next section, we will see that
the CIP allows us to determine the overlapping elements of maximal cliques in an efficient
manner. Although clique trees are not uniquely determined, it is known that the multiset of
separators {Cr∩Cs : (Cr, Cs) ∈ E} is invariant for all clique trees T (K, E) of a given chordal
graph, a fact suitable for our purpose together with the CIP. Here K denotes the family of
all maximal cliques of the given chordal graph. Finally, any ordering of the maximal cliques
K satisfying the RIP, allows us to make a block decomposition of the maximum-determinant
positive definite matrix completion of a partial symmetric matrix as we will see next.

2.3 The sparse clique-factorization formula

The following lemma plays the central role in the completion method (section 5).

Lemma 2.1 ([8]) Let G(V, F ◦) be a chordal graph, and K = {C1, C2, . . . , C�} its family of
all maximal cliques indexed according to the RIP. Consider a partial symmetric matrix X̄
with elements specified in F which satisfies the clique-PD condition:

X̄CrCr ∈ SCr
++ (r = 1, 2, . . . , �).

Let P be a permutation matrix representing a PEO of G(V, F ◦) induced by the RIP in such
a way that (1, 2, . . . , n) is a PEO for PX̄P T . Then the maximum-determinant positive def-
inite matrix completion X̂ of X̄ can be expressed in terms of the sparse clique-factorization
formula

PX̂P T = LT
1 LT

2 · · ·LT
�−1DL�−1 · · ·L2L1, (3)

where Lr (r = 1, 2, . . . , � − 1) are lower triangular matrices, and D is a positive definite
block-diagonal matrix consisting of � diagonal blocks. More explicitly, let

Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ C�) (r = 1, 2, . . . , �),
Ur = Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ C�) (r = 1, 2, . . . , �).

Then

[Lr]ij =

1 (i = j)

[X̄
−1
UrUr

X̄UrSr]ij (i ∈ Ur, j ∈ Sr)
0 (otherwise)

5

for r = 1, 2, . . . , � − 1, and

D =

DS1S1

DS2S2

. . .

DS�S�

with

DSrSr =

{
X̄SrSr − X̄SrUrX̄

−1
UrUr

X̄UrSr (r = 1, 2, . . . , � − 1),
X̄S�S�

(r = �).

Remark 2.2 It is not difficult to see that we can choose Cs in (RIP) as being the “parent”
of Cr (in the rooted clique tree) for r = 1, 2, . . . , � − 1. Therefore, Ur = Cr ∩ (Cr+1 ∪
Cr+2 ∪ · · · ∪ C�) coincides with Cr ∩ Cs, and it can be simultaneously obtained during the
construction of the clique tree.

Henceforth, we assume that the maximum-determinant positive definite matrix comple-
tion X̂ of X̄ is already reordered according to a PEO, and therefore we drop the matrices
P and P T from the sparse clique-factorization formula (3). Moreover, due to this formula,
the matrix X̂ can be expressed in the form

X̂
−1

= WD−1W T (4)

where W = L−1
1 L−1

2 · · ·L−1
�−1 is a lower triangular matrix with possible nonzero elements

specified in F .

3 Primal-dual interior-point method

In this section, we describe a generic framework for primal-dual interior-point methods
applied to SDPs (1) and (2) [10, 13, 16, 18, 21, 24]. Various search directions have been
proposed so far for primal-dual interior-point methods [21]. We restrict ourselves to the
HRVW/KSH/M search direction [10, 13, 16] in this article. In addition, we only consider a
simple primal-dual path-following interior-point method which is not a Mehrotra type since
we implement this simple method in the completion method described in section 5. On the
other hand, we can solve the standard equality form SDP resulting from the conversion
method described in section 4 by Mehrotra type primal-dual path-following interior-point
methods.

The simple primal-dual path-following interior-point method using the HRVW/KSH/M
search direction for SDPs is described in Algorithm 3.1.

Notice that if the data matrices Ap (p = 0, 1, . . . , m) have a common block-diagonal
matrix structure, Algorithm 3.1 can be carried out more efficiently. This fact is exploited
in several software packages [3, 6, 19, 23].

In general, when we apply primal-dual interior-point methods to large scaled and sparse
SDPs (especially when n is large), it becomes extremely expensive to treat the large and

dense matrices (e.g., X , dX and d̃X at Steps 2 and 3), since their multiplications require
O(n3) flops [5]. Utilizing the idea of positive (semi)definite matrix completion (section 2),
the conversion method and completion method, which will be presented in the next two
sections, solve partially the above drawback of primal-dual interior-point methods.

6

Algorithm 3.1: Primal-Dual Path-Following Interior-Point Method

Step 0: Set a stopping criterion, a parameter κ ∈ [0, 1), and choose an initial interior-point
(X0, Y 0, z0) ∈ Sn

++ × Sn
++ × Rm. Let (X, Y , z) = (X0, Y 0, z0).

Step 1: If the current iterate (X, Y , z) satisfies the stopping criterion, stop the iteration.
Otherwise, compute µ = X • Y /n.

Step 2: Compute the HRVW/KSH/M search direction (dX, dY , dz) ∈ Sn × Sn × Rm

which satisfies the system of linear equations

Ap • dX = gp (p = 1, 2, . . . , m), dX ∈ Sn,
m∑

p=1

Apdzp + dY = H , dY ∈ Sn, dz ∈ Rm,

d̃XY + XdY = K, d̃X ∈ Rn×n, dX = (d̃X + d̃X
T
)/2

, (5)

where gp = bp − Ap • X ∈ R (p = 1, 2, . . . , m), H = A0 −
∑m

p=1 Apzp − Y ∈ Sn, and
K = κµI − XY .

Step 3: Choose a primal step length αp and a dual step length αd such that

X + αpdX ∈ Sn
++ and Y + αddY ∈ Sn

++,

and let
X = X + αpdX and (Y , z) = (Y , z) + αd(dY , dz).

Step 4: Go to Step 1.

4 Conversion method

This section is devoted to a practical implementation of the conversion method. Here, we
assume that a chordal extension G(V, F ◦) of the aggregate sparsity pattern and a clique tree
T (K, E) of G(V, F ◦) were already constructed, where K = {C1, C2, . . . , C�} is the family of
all maximal cliques of G(V, F ◦). See subsection 2.2.

Subsection 4.1 gives an equivalent formulation, which has multiple and smaller size
positive semidefinite matrix variables, to the standard primal SDP (1), and therefore, might
be solved faster than (1). Although, the conversion method seems attractive, it has the
drawback of adding extra equalities to its equivalent formulation when we convert a given
standard primal SDP. This drawback is partially removed in subsection 4.2 where we present
a heuristic algorithm to diminish these extra equalities. Both subsections make use of the
CIP of clique trees (subsection 2.2).

7

4.1 Conversion to an SDP having multiple but smaller size posi-
tive definite semidefinite matrix variables

In [8, section 4], it was shown that the standard primal SDP (1) can be converted to
an equivalent SDP having multiple but smaller size positive semidefinite matrix variables.
There, special attention was paid to deal with the overlapping variables Xij ((i, j) ∈ (Cr ∩
Cs)× (Cr ∩Cs), Cr ∩Cs �= ∅) of two distinct positive semidefinite constraints XCrCr ∈ SCr

+

and XCsCs ∈ SCs
+ .

In fact, the indices of such overlapping variables can be detected easily from a clique
tree. As we will see below, a single visit to each edge (Cr, Cs) ∈ E of the clique tree T (K, E)
in any order, and the determination of Cr ∩ Cs provides us with these indices. Then, we
can write the equivalent SDP [8, section 4] as follows:

minimize
∑

(i,j)∈F

[A0]ijX
r̂(i,j)
ij

subject to
∑

(i,j)∈F

[Ap]ijX
r̂(i,j)
ij = bp (p = 1, 2, . . . , m),

Xr
ij = Xs

ij

(
(i, j) ∈ (Cr ∩ Cs) × (Cr ∩ Cs), i ≥ j,
(Cr, Cs) ∈ E , 1 ≤ r < s ≤ �

)
,

Xr ∈ SCr
+ (r = 1, 2, . . . , �)

,

(6)
where r̂(i, j) = min{r : (i, j) ∈ Cr × Cr} is introduced to avoid the addition of repeated
terms. If we further introduce a block-diagonal symmetric matrix variable of the form

X ′ =

X1 O O · · · O
O X2 O · · · O
...

...
...

. . .
...

O O O · · · X�

 ,

and appropriately rearrange all data matrices A0, A1, . . . , Am, and the matrices correspond-
ing to the equalities Xr

ij = Xs
ij to have the same block-diagonal structure as X ′, we obtain

a standard equality form SDP.
Observe that the standard primal SDP (1) has a single matrix variable of size n×n and

m equality constraints. After the conversion, the SDP (6) has

(a) � matrices of size #Cr × #Cr, #Cr ≤ n (r = 1, 2, . . . , �), and

(b) m+ = m +
∑

(Cr ,Cs)∈E
g(Cr ∩ Cs) equality constraints where g(Cr) =

#Cr(#Cr + 1)

2
.

It is not difficult to see that the equations Xr
ij = Xs

ij in (6) provide with the association we
sought. Suppose for instance that XCrCr and XCsCs share the same variable at the position
(i, j), and therefore, we need to associate [XCrCr]ij with [XCsCs]ij . We have i, j ∈ Cr ∩Cs,
and since Cr and Cs are vertices in the clique tree, there is a unique path of maximal cliques
[Cr = C0, C1, . . . , Cf = Cs] (f ≥ 1) which connects them. Using the CIP, we have i, j ∈ Ct

(t = 0, 1, . . . , f), and the equations in (6) give us

[XC0C0]ij = [XC1C1]ij = · · · = [XCf Cf]ij

8

as we wanted. Observe further that we do not have redundant equalities in (6) otherwise
we would have a cycle in the clique tree. Finally, due to the invariance of the multiset of
separators {Cr ∩ Cs : (Cr, Cs) ∈ E}, the equalities in (6) are independent of the choice of
the clique tree we make.

Remark 4.1 We employed a different notation from the one used in the previous article
[8] to describe the converted SDP. In [8, (4.1)], the indices of the overlapping variables were
represented by Er = {(i, j) ∈ Cr ×Cr : (i, j) ∈ Cs ×Cs for some s < r}, and each auxiliary
variable U r

ij ((i, j) ∈ Er, i ≥ j, r = 2, 3, . . . , �) was associated with the same variable Xij

((i, j) ∈ Er, i ≥ j, r = 2, 3, . . . , �). Making use of the CIP, the reader can verify that [8,
(4.1)] and (6) are the same SDP in practice, although the equalities are rearranged in a
different manner. We preferred though to utilize the notation in (6) which is closer to our
implementation.

4.2 Obtaining a “good” clique tree for the conversion method

As pointed out in [8, sections 4 and 7], we need to balance the factors (a) and (b) stated
above in the conversion method to obtain an equivalent SDP (6) which we expect to be
solved in a shorter time than the standard primal SDP (1). Observe that the factors (a)
and (b) predict the flops at Steps 3 and 2 in Algorithm 3.1, respectively. Although we
know a rough estimate of the flops for typical primal-dual interior-point methods applied
to (6) (see subsection 5.4), it seems a hard task to determine a suitable chordal extension,
and consequently a clique tree which also takes into account the sparsity and the sparse
structure of (6) to diminish the flops.

We propose, therefore, the following simple strategy to obtain a “good” clique tree
(chordal extension) for the conversion method. We first construct a clique tree from a chordal
graph which has as little fill-in as possible through the method described in subsection 2.2.
We can use for instance the best ordering between the multilevel nested dissection [12] and
the minimum degree [1] for that. This clique tree has possibly several maximal cliques of
small sizes. Then, the lemmas below guarantee that we can successively diminish the number
of vertices in the clique tree maintaining its structure. Consequently, we can diminish the
quantity m+ in (b) and the number � of matrices in (a), at the same time we increase the
sizes of these matrices.

Lemma 4.2 Let T (K, E) be a clique tree of G(V, F ◦), and suppose that (Cr, Cs) ∈ E . We
construct a new tree T ′(K′, E ′) merging Cr and Cs, i.e., replacing Cr, Cs ∈ K by Cr∪Cs ∈ K′,
deleting (Cr, Cs) ∈ E , and replacing (Cr, C), (Cs, C) ∈ E by (Cr ∪ Cs, C) ∈ E ′. Then
T ′(K′, E ′) is a clique tree of G(V, F ′◦), where F ′ = {(i, j) ∈ C ′

r × C ′
r : r = 1, 2, . . . , �′} for

K′ = {C ′
1, C

′
2, . . . , C

′
�′}, �′ = � − 1. Moreover, let m+ be defined as in (b), and m′

+ be the
corresponding one for T ′(K′, E ′). Then m′

+ = m+ − g(Cr ∩ Cs).

Proof: We first verify the CIP for T ′(K′, E ′). Let C, C ′ ∈ K′, and [C = C1, C2, . . . , Cf =
C ′] (f > 2) be the unique path in T ′(K′, E ′) which connects C and C ′. We con-
sider three cases for the proof. Case a: Cr ∪ Cs = Ct for some t ∈ {2, 3, . . . , f − 1};
case b: Cr ∪ Cs = Ct for t = 1 or t = f ; case c: otherwise. Case a: since the
cliques in T (K, E) satisfy the CIP, C ∩ C ′ ⊆ C1, C2, . . . , Ct−1, Cr, C

t+1, . . . , Cf and/or

9

C ∩ C ′ ⊆ C1, C2, . . . , Ct−1, Cs, C
t+1, . . . , Cf . Therefore, C ∩ C ′ ⊆ C1, C2, . . . , Ct−1, Cr ∪

Cs, C
t+1, . . . , Cf , and the CIP is valid. Case b: we assume without loss of generality

that Cr ∪ Cs = C1 (which includes the case Cr ∪ Cs = Cf). Since T (K, E) satisfies the
CIP, Cr ∩ Cf , Cs ∩ Cf ⊆ C2, C3, . . . , Cf−1, and therefore C ∩ C ′ = (Cr ∪ Cs) ∩ Cf =
(Cr ∩ Cf) ∪ (Cs ∩ Cf) ⊆ C2, C3, . . . , Cf−1 as we wished. Case c: the remaining case
((Cr ∪ Cs) �= Ct for t = 1, 2, · · · , f) is obvious. Next, we show the maximality of the
elements in K′. Since it is obvious that Cr ∪ Cs �⊆ C, ∀C ∈ K′, C �= Cr ∪ Cs, we just
need to show that Cr ∪ Cs �⊇ C, ∀C ∈ K′, C �= Cr ∪ Cs. Suppose that there is a C ∈ K′

such that Cr ∪ Cs � C. We can assume without loss of generality that Cr is on the path
connecting C to Cs in T (K, E). Then, since the CIP is valid in T ′(K′, E ′), C ∩ Cs ⊆ Cr,
and therefore C = (C\Cs) ∪ (C ∩ Cs) ⊆ Cr ∪ Cr = Cr, which contradicts the maximality
of C in K. Consequently, T ′(K′, E ′) is a clique tree. If we construct a new graph G(V, F ′◦)
from the family of maximal subsets K′ = {C ′

1, C
′
2, . . . , C

′
�′} and the edge set E ′, we know

from the discussion in subsection 2.2 that it is also a chordal graph. m′
+ = m+−g(Cr∩Cs)

follows by simple inspection and the CIP.

Lemma 4.3 Let T (K, E) be a clique tree of G(V, F ◦), and suppose that (Cr, Cq), (Cs, Cq) ∈
E. We construct a new tree T ′(K′, E ′) in the following way:

1. If Cr∪Cs �⊇ Cq, merge Cr and Cs, i.e., replace Cr, Cs ∈ K by Cr∪Cs ∈ K′ and replace
(Cr, C), (Cs, C) ∈ E by (Cr ∪ Cs, C) ∈ E ′;

2. Otherwise, merge Cr, Cs and Cq, i.e., replace Cr, Cs, Cq ∈ K by Cr ∪ Cs ∪ Cq ∈ K′,
delete (Cr, Cq), (Cs, Cq) ∈ E and replace (Cr, C), (Cs, C), (Cq, C) ∈ E by (Cr ∪ Cs ∪
Cq, C) ∈ E ′.

Then T ′(K′, E ′) is a clique tree of G(V, F ′◦), where F ′ = {(i, j) ∈ C ′
r × C ′

r : r = 1, 2, . . . , �′}
for K′ = {C ′

1, C
′
2, . . . , C

′
�′}, �′ = � − 1 (case 1) and �′ = � − 2 (case 2). Moreover, let

m+ be defined as in (b), and m′
+ be the corresponding one for T ′(K′, E ′). Then, we have

respectively

1. m′
+ = m+ − g(Cr ∩ Cq) − g(Cs ∩ Cq) + g((Cr ∪ Cs) ∩ Cq) and;

2. m′
+ = m+ − g(Cr ∩ Cq) − g(Cs ∩ Cq).

Proof: The same arguments of Lemma 4.2 guarantee that T ′(K′, E ′) satisfies the CIP.
We now show the maximality of the elements in K′ for the case 1 (Cr ∪ Cs �⊇ Cq). Once
more, we just need to show that Cr ∪Cs �⊇ C, ∀C ∈ K′, C �= Cr ∪Cs. Suppose that there
is some C ∈ K′ such that Cr ∪Cs � C. If C is such that Cq does not lie on the path which
connects C, and Cr or Cs in T (K, E), the arguments of Lemma 4.2 apply. Otherwise,
suppose that C is such that Cq always lies on the path which connects C and both Cr

and Cs in T (K, E). We have C ∩ Cr, C ∩ Cs ⊆ Cq from the CIP. Since Cr ∪ Cs � C,
C = C ∩ (Cr ∪ Cs) = (C ∩ Cr) ∪ (C ∩ Cs) ⊆ Cq which contradicts the maximality of C
in K. We know now that the unique case for which Cr ∪ Cs �⊇ C, C ∈ K′, C �= Cr ∪ Cs

might not hold is when C = Cq. We are in case 2, and merging Cq with Cr ∪ Cs, the
maximality of the cliques in K′ follows. Using the same arguments of the proof of Lemma
4.2, the resulting T ′(K′, E ′) is a clique tree of the chordal graph G(V, F ′◦). The second
part of the lemma follows by simple inspection and the CIP.

10

Observe that since the tree T ′(K′, E ′) resulting from Lemmas 4.2 and 4.3 is a clique tree
of G(V, F ′◦), it satisfies the CIP. Also G(V, F ′◦) is a chordal graph. It is important to notice
here that the merging operations of Lemmas 4.2 and 4.3 are equivalent to adding extra
edges to the chordal extension G(V, F ◦) which results in G(V, F ′◦).

As we have mentioned, it seems difficult to find an exact criterion which decides when
two maximal cliques Cr and Cs satisfying the hypothesis of Lemmas 4.2 or 4.3 should be
merged or not to balance the factors (a) and (b) in terms of the number of flops. Therefore,
we adopted the following simple criterion which seems reasonable for our purpose.

Let σ ∈ (0, 1). We merge the cliques Cr and Cs if

min

{
#(Cr ∩ Cs)

#Cr
,
#(Cr ∩ Cs)

#Cs

}
≥ σ. (7)

Although the criterion (7) is not complete, it takes into account the sizes of the involved
cliques Cr and Cs, and compares them with the size of common indices #(Cr ∩ Cs). Also,
the minimization among the two quantities avoids the merging of large and small cliques
which share a reasonable number of indices if compared with the smaller one.

We summarize in Algorithm 4.4 the heuristic algorithm we implemented to obtain a
“good” clique tree for the conversion method.

Algorithm 4.4: Diminishing the number of maximal cliques in the clique tree
T (K, E)

Choose a maximal clique in K to be the root for T (K, E), and let σ ∈ (0, 1)
for each maximal clique C which was visited for the last time in T (K, E) in a
depth-first search

Set Cq = C
for each pair of descendents Cr and Cs of Cq in T (K, E)

if criterion (7) is satisfied, and m′
+ < m+ in Lemma 4.3

then merge Cr and Cs (or Cq, Cr and Cs), and let T (K, E) =
T ′(K′, E ′)

end(for)
Set Cr = C
for each descendent Cs of Cr in T (K, E)

if criterion (7) is satisfied
then merge Cr and Cs and let T (K, E) = T ′(K′, E ′)

end(for)
end(for)

After we have obtained a clique tree T (K, E) from Algorithm 4.4, it is sufficient to visit
each edge of the resulting clique tree to obtain the overlapping variables of (6) as discussed
in subsection 4.1. The unique parameter σ in (7) involved in Algorithm 4.4 is unfortunately
SDP dependent. We can, however, obtain a “good” conversion even if we fix it to a specific
value as we can observe from the numerical experiments (section 6) over our set of SDPs.

11

5 Completion method

One disadvantage of the conversion method is an increase in the number of equality con-
straints. In this section, we present a primal-dual interior-point method based on positive
definite matrix completion which we can apply directly to the SDPs (1) and (2) without
adding any equality constraint. In this completion method [8], we perform all matrix oper-
ations using only sparse matrices, and neither introduce nor store any dense matrix.

This section is organized as follows. In subsection 5.1, we compute the duality gap
(Step 1 of Algorithm 3.1) by effectively utilizing the sparsity of the matrix variables. In
subsection 5.2, we compute the search direction (Step 2 of Algorithm 3.1) by utilizing a
sparse factorization of the primal matrix variable. In subsection 5.3, we compute the primal
and dual step lengths (Step 3 of Algorithm 3.1) by utilizing a positive definite matrix
completion of the primal matrix variable. Finally, in subsection 5.4, we make a rough
comparison among the standard primal-dual interior-point method, the conversion method
and the completion method in terms of the number of flops and the memory amount.

We assume that an extended sparsity pattern F of the aggregate sparsity pattern E is
already determined, and the maximal cliques K = {C1, C2, . . . , C�} of the chordal extension
G(V, F ◦) are already indexed according to the RIP (subsection 2.2).

Throughout this section, we use the following notation:

• Sn(F, ?): the set of n × n partial symmetric matrices with elements specified in F ;

• Sn
++(F, ?): the set of n × n partial symmetric matrices with elements specified in F

which can be completed to positive definite matrices, i.e., Sn
++(F, ?) = {X̄ ∈ Sn(F, ?) :

∃X ∈ Sn
++, X̄ij = Xij for (i, j) ∈ F};

• Sn(F, 0): the set of n×n symmetric matrices with vanishing elements outside F , i.e.,
Sn(F, 0) = {X ∈ Sn : Xij = 0, if (i, j) �∈ F};

• Sn
++(F, 0): the set of n×n positive definite symmetric matrices with vanishing elements

outside F , i.e., Sn
++(F, 0) = Sn

++ ∩ Sn(F, 0) = {X ∈ Sn
++ : Xij = 0 if (i, j) /∈ F}.

Let (X̄, Y , z) ∈ Sn
++(F, ?) × Sn

++(E, 0) × Rm be a point obtained at an iteration of
Algorithm 3.1 or given initially. Here the feasibility of the point (X̄, Y , z) is not assumed;
X̄ and (Y , z) need not satisfy the equality constraints of the SDPs (1) and (2), respectively.

5.1 Duality gap

Since Y ∈ Sn
++(E, 0), we use the partial symmetric matrix X̄ ∈ Sn

++(F, ?) to compute the
duality gap

µ =
1

n

∑
(i,j)∈E

X̄ijYij

at Step 1 of Algorithm 3.1. The number of required flops amounts to the number of elements
in the set E.

12

5.2 Search direction

In order to compute the HRVW/KSH/M search direction (dX, dY , dz) at Step 2 of Algo-
rithm 3.1, we reduce the system of linear equations (5) to

Bdz = s, (8)

dY = H −
m∑

p=1

Apdzp, (9)

d̃X = (κµI − XY − XdY)Y −1, (10)

dX = (d̃X + d̃X
T
)/2, (11)

where

Bpq = Trace ApXAqY
−1 (p, q = 1, 2, . . . , m),

sp = gp − Trace Ap(κµI − XY − XH)Y −1 (p = 1, 2, . . . , m)

}
.

The standard primal-dual interior-point method needs to store all elements of the matrices
X and Y −1, and employs efficient methods to compute the coefficient matrix B of (8) by
exploiting the sparsity of the data matrices Ap (p = 1, 2, . . . , m) (see for instance [7]). The
completion method also relies on (8) to compute a search direction (dX, dY , dz), but avoids
using the matrices X and Y −1 explicitly since they become dense in general. Therefore, we
propose a new formula for computing the coefficient matrix B.

Let X̂ be the maximum-determinant positive definite matrix completion of X̄ ∈ Sn
++(F, ?)

obtained by Lemma 2.1, which we will use as the primal matrix variable X in (8). Re-

call that the inverse X̂
−1

of X̂ is expressed in terms of a sparse factorization (4); hence
X̂ = W−T DW−1, where W is a lower triangular matrix and D is a block-diagonal matrix.
Also Y ∈ Sn

++(E, 0) has a Cholesky factorization Y = NNT without any fill-in except
for elements specified in F\E. It should be noted that all the matrices W , D and N
have possible nonzero elements in the extended sparsity pattern F . In addition, the sets of
off-diagonal nonzero elements of W , D and W T do not intersect with each other.

Based on matrix-vector multiplications, we now compute the coefficient matrix B and
the right hand side vector s of (8) simultaneously.

Bpq =

n∑
k=1

(W−T DW−1ek)
T Aq(N

−T N−1[Ap]∗k) (p, q = 1, 2, . . . , m),

sp = bp +
n∑

k=1

[
(W−T DW−1ek)

T H(N−T N−1[Ap]∗k) − κµeT
k N−T N−1[Ap]∗k

]
(p = 1, 2, . . . , m).

Here [Ap]∗k denotes the kth column of the data matrices Ap ∈ Sn (p = 1, 2, . . . , m), and
ek ∈ Rn the vector with the kth element 1 and others 0. More precisely, we compute B and
s according to Algorithm 5.1, which exploits the sparsity of the matrices involved therein
as follows:

• The second loop over the index k is not executed when [Ap]∗k is equal to the zero
vector.

13

• When we perform a matrix-vector multiplication with the inverse of either of the
matrices W , W T , N or NT , e.g., v = W−1ek, we solve the system of linear equations
Wv = ek instead. Since these matrices are sparse and triangular, we can solve the
corresponding system of linear equations efficiently.

• The matrices Ap (p = 1, 2, . . . , m), H and D are also sparse matrices with possible
nonzero elements in F , and then, each matrix-vector multiplication involving these
matrices is also carried out efficiently.

Algorithm 5.1: Computation of B and s

Set B = O and s = b
for p = 1, 2, . . . , m

for k = 1, 2, . . . , n with [Ap]∗k �= 0
Compute v1 = N−T N−1[Ap]∗k and v2 = W−T DW−1ek

for q = 1, 2, . . . , m
Compute vT

2 Aqv1 and add to Bpq

end(for)
Compute vT

2 Hv1 and add to sp

Compute κµeT
k v1 and subtract from sp

end(for)
end(for)

As in the standard primal-dual interior-point method, we then apply the Cholesky factor-
ization to the matrix B, which is fully dense in general, to obtain a solution dz of the system
of linear equations (8). Next, we compute dY ∈ Sn(E, 0) by (9). Since H , Ap ∈ Sn(E, 0)
(p = 1, 2, . . . , m), the computation of dY is performed only for elements specified in E.

Now we compute d̃X by (10). Each column of d̃X is computed by

[d̃X]∗k = κµN−T N−1ek − [X]∗k − W−TDW−1dY N−T N−1ek (k = 1, 2, . . . , n).
(12)

However, we do not need to compute the elements [d̃X]ij with indices (i, j) �∈ F , since they
do not contribute in the search direction [8, section 5]. Each matrix-vector multiplication
in (12) is done in the same way as above.

Finally, let dX = (d̃X + d̃X
T
)/2; again only elements with indices (i, j) ∈ F need to be

calculated to generate the partial symmetric matrix d̄X ∈ Sn(F, ?).

5.3 Step length

In [8, section 5], we described a method to avoid dense matrix computation for the step
lengths. To determine the primal and dual step lengths at Step 3 of Algorithm 3.1, we
compute the minimum eigenvalues of the matrices

M̄
−1
r d̄XCrCrM̄

−T
r ∈ S#Cr (r = 1, 2, . . . , �), and N−1dY N−T ∈ Sn,

where X̄CrCr = M̄ rM̄
T
r is a Cholesky factorization of X̄CrCr ∈ S#Cr

++ . Since the first �
matrices are smaller than the primal matrix variable X, their computation is much faster.

14

In addition, the minimum eigenvalue of N−1dY N−T can be computed easily by the Lanczos
method, because N and dY are sparse matrices with possible nonzero elements specified
in F . In both of the cases, we exploit the sparsity of the matrices X̄ ∈ Sn

++(F, ?) and
Y ∈ Sn

++(E, 0).

5.4 Comparison

Each iteration of the completion method updates and stores the partial symmetric ma-
trices X̄, d̄X ∈ Sn(F, ?), the sparse matrices Y , D, W , N , dY with possible nonzero
elements specified in F , and the smaller size matrices d̄XCrCr ∈ S#Cr , M̄ r ∈ R#Cr×#Cr

(r = 1, 2, . . . , �). The efficiency of the completion method and also of the conversion method
depends not only on the number of elements of the extended sparsity pattern F , but also
on its structure, so that their exact evaluation is quite difficult. Therefore, we only make a
rough comparison among the flops and the memory required by each iteration of the stan-
dard primal-dual interior-point method, the conversion method and the completion method
as shown in Table 1. Four factors are considered here: the size n of the primal matrix
variable X and the dual matrix variable Y , the number m of linear equality constraints
in the standard primal SDP (1), the density α ∈ [0, 1] of the extended sparsity pattern =
“(the number of elements of F) / n2,” and the number m+ of the linear equality constraints
in the standard primal SDP (6) for the case of the conversion method. We assume that
each data matrix Ap has only O(1) nonzero elements (p = 0, 1, . . . , m). In Table 1, “other
parts” includes the computations of dY ∈ Sn(E, 0), d̄X ∈ Sn(F, ?), the primal and dual
step lengths, etc.

Table 1: Rough comparison among the standard primal-dual interior-point method, conver-
sion method and completion method.

standard conversion completion
method method method

elements of B O(m2) O(m2
+) O(m2 + mn2α)

flops solution of Bdz = s O(m3) O(m3
+) O(m3)

other parts O(n3) O(n3α1.5) O(n3α)
memory solution of Bdz = s O(m2) O(m2

+) O(m2)
other parts O(n2) O(n2α) O(n2α)

For computing the elements of the coefficient matrix B, the conversion method and the
completion method need more flops than the standard primal-dual interior-point method.
For solving the system of linear equations Bdz = s, the conversion method needs more
flops than the other methods since m+ is generally larger than m. Finally, for the other
parts, both of the conversion and completion methods are more efficient than the standard
primal-dual interior-point method.

Considering now the used memory, the conversion method requires to store the m+×m+

coefficient matrix B which is larger than the coefficient matrix of the standard primal-
dual interior-point method and the completion method. For the other parts, the standard

15

primal-dual interior-point method requires the largest amount of memory. Considering all,
the completion method requires the least memory storage among the three methods.

6 Numerical experiments

In this section, we present some numerical experiments to evaluate the conversion method
(section 4) and the completion method (section 5) proposed in [8] and detailed in this article.
We compare these two methods with the software SDPA 5.0 [6] which is an implementation
of the standard primal-dual path-following interior-point method for SDPs. The compar-
isons are made over four classes of pseudo-randomly generated SDPs, namely, the norm
minimization problems, the SDP relaxations of quadratic programs with box constraints,
max-cut problems over lattice graphs and graph partition problems over lattice graphs, and
two problems from the 7th DIMACS implementation challenge library (semidefinite and
related optimization problems). These problems fulfill the characteristics we have required
for our methods, i.e., they are large scale, sparse, and both the aggregate sparsity pattern
and the extended sparsity pattern are sparse. The only exceptions are the two problems
from the DIMACS implementation challenge library which do not have sparse extended
sparsity patterns.

In Tables 3 to 9 of the following subsections, the entries “standard” mean that we
solved the original SDP by the SDPA 5.0. The entries “conversion” means that we first
applied the conversion method to convert the original SDP (according to the algorithms
in subsections 2.2 and 4.2), and then that we solved the resulting SDP by the SDPA 5.0.
Finally, the entries corresponding to the “completion” were obtained by the new code SDPA-
C which incorporates the sparse clique-factorization formula (3), and all features detailed in
subsections 5.1, 5.2 and 5.3. All the tables give the computational time and used memory
for “standard”, “conversion” and “completion”. The numbers between parenthesis in the
“conversion” columns are the computational time for the conversion itself with σ fixed to
0.06 in (7). The last two columns give the sparsity of the aggregate sparsity patterns and
of the extended sparsity patterns. The n and m below the tables correspond to the sizes of
the matrices and the number of equality constraints for the original SDP in the standard
equality form (1) and (2), respectively. The n’s and m+ for the converted SDP are omitted
here.

All numerical experiments were conducted on a DEC Alpha Station (CPU Alpha 21164-
600MHz with 1024MB). We adopted the set of parameters shown in Table 2 for most of the
cases when running the SDPA 5.0 with the HRVW/KSH/M direction selected.

6.1 Norm minimization problems

Let F i ∈ R q×r (i = 0, 1, . . . , t). The norm minimization problem is defined as:

minimize

∥∥∥∥∥F 0 +

t∑
i=1

F izi

∥∥∥∥∥
subject to zi ∈ R (i = 1, 2, . . . , t)

 .

16

Table 2: Parameters for the SDPA 5.0 [6].

ε∗ tolerance for the relative duality gap 10−6

λ∗ parameter for the initial point 102

ε′ tolerance for the feasibility error 10−7

β∗ parameter for the search direction for feasible points 0.1
β̄ parameter for the search direction for infeasible points 0.2
γ∗ reduction factor of the step length 0.9

We can reduce this problem to an SDP:

maximize −zt+1

subject to
t∑

i=1

(
O F T

i

F i O

)
zi +

(
I O
O I

)
zt+1 +

(
O F T

0

F 0 O

)
∈ Sq+r

+

 .

In our numerical experiments, all F i (i = 0, 1, . . . , t) are pseudo-randomly generated
dense matrices. Observe that as q becomes large, the aggregate sparsity pattern and the
extended sparsity pattern become dense for these problems.

Table 3 shows the comparisons among the “standard” method (SDPA), the conversion
method applied before solving with the SDPA, and the completion method (SDPA-C) for a
fixed n = q + r, and m = t + 1. On the other hand, Table 4 compares these three methods
for increasing n = q + r. The entries “m.e.” means that the memory exceeded.

Table 3: Numerical results on norm minimization problems I.
standard conversion completion sparsity

CPU memory CPU memory CPU memory aggregate extended
q (s) (MB) (s) (MB) (s) (MB) (%) (%)
1 3302.2 321 4.4 (7.3) 10 100.4 5 0.30 0.30
2 4159.4 321 7.9 (5.9) 16 158.5 6 0.50 0.50
5 5200.7 321 28.0 (7.3) 32 380.4 10 1.10 1.10

10 6688.0 321 100.3 (8.1) 58 699.9 18 2.08 2.09
20 6630.4 321 445.5 (11.6) 113 2491.7 45 4.02 4.06
50 7123.2 321 3256.5 (25.7) 249 — — 9.60 9.84

Problem size: n = q + r =1000, m = t + 1 =11.

In the case of norm minimization problems, the conversion method performed much
better than the other two methods for n = q + r = 1000, specially when q � r. The
completion method is also faster than the “standard” method excepting the last case where
we ran out of time. When n increases, we can only solve these problems by the completion
method because of the memory requirement. For all the cases including the results for
SDP relaxations of quadratic programs with box constraints, max-cut problems over lattice
graphs, graph partition problems over lattice graphs, and the DIMACS implementation
challenge problems, the amount of used memory for the completion method is extremely
small if compared with the “standard” method, and even less than the conversion method.

17

Table 4: Numerical results on norm minimization problems II.
standard conversion completion sparsity

CPU memory CPU memory CPU memory aggregate extended
q (s) (MB) (s) (MB) (s) (MB) (%) (%)
5 m.e. m.e. m.e. m.e. 1621.3 18 0.55 0.55
5 m.e. m.e. m.e. m.e. 3822.0 26 0.37 0.37
5 m.e. m.e. m.e. m.e. 7933.7 34 0.27 0.27
5 m.e. m.e. m.e. m.e. 14603.3 41 0.22 0.22
Problem size: n = q + r =2000, 3000, 4000, and 5000, respectively, m = t + 1 =11.

6.2 Quadratic programs with box constraints

Let Q ∈ Sn and q ∈ Rn. The quadratic program with a box constraint is defined as:

minimize 1
2
xT Qx + qT x

subject to −1 ≤ xi ≤ 1 (i = 1, 2, · · · , n)

}
.

We have the following SDP relaxation for the above problem

minimize
1

2

 0 qT 0T

q Q O
0 O O

 • X

subject to

 1 0T 0T

0 O O
0 O O

 • X = 1,

 0 0T 0T

0 Eii O
0 O Eii

 • X = 1 (i = 1, 2, · · · , n), X ∈ S1+2n

+

.

Here Eii ∈ Sn denotes the matrix with (i, i)th element one and all others zeros.
Table 5 compares the three methods applied to this particular class of SDPs. β denotes

the average number of nonzeros per column of the matrix Q ∈ Sn, and the vector q ∈ Rn.
n =[1001,1000d] at the bottom of the table means that the primal matrix variable X has a
block matrix of size 1001×1001 and a diagonal matrix of size 1000×1000.

Table 5: Numerical results on SDP relaxations of quadratic programs with box constraints.
standard conversion completion sparsity

CPU memory CPU memory CPU memory aggregate extended
β (s) (MB) (s) (MB) (s) (MB) (%) (%)

3.0 3201.3 316 1238.9 (16.3) 180 758.3 18 0.50 2.83
3.5 3121.4 316 1673.5 (24.1) 214 877.8 22 0.55 4.56
4.0 3059.2 316 1916.7 (34.2) 245 1088.1 29 0.60 6.43
4.5 2898.8 316 2129.4 (43.7) 255 1421.4 37 0.66 8.55
5.0 3058.4 316 2551.6 (71.6) 275 2099.3 57 0.70 10.41

Problem size: n =[1001,1000d], m =1001.

18

In the case of SDP relaxations of quadratic programs with box constraints, the com-
pletion method performed better than the other methods. Notice that the sparsity of the
extended sparsity pattern is sensitive to the sparsity of the original quadratic program.

6.3 Max-cut problems over lattice graphs

Let G(V, E) be a lattice graph of size k1×k2 with vertex set V = {1, 2, . . . , n}, and edge set
E ⊆ {(i, j) : i, j ∈ V, i < j} such that n is equal to k1k2 and |E| is equal to 2k1k2 − k1 − k2.
We assign a pseudo-randomly generated weight Cij = Cji to each edge (i, j) ∈ E. The
maximum cut problem is a problem of finding a partition (L, R) of V which maximizes the
cut c(L, R) =

∑
i∈L,j∈R Cij.

Let us define C ∈ Sn by Cji = Cij ((i, j) ∈ E) and Cij = 0 ((i, j) /∈ E), and A0 ∈ Sn by
A0 = diag(Ce) − C, where e ∈ Rn denotes the vector of ones and diag(Ce) the diagonal
matrix with diagonal equal to Ce ∈ Rn. Then we can obtain the following SDP relaxation
of the maximum cut problem.

minimize −A0 • X
subject to Eii • X = 1/4 (i = 1, 2, . . . , n), X ∈ Sn

+

}
.

Table 6 compares the three methods for this problem. As k1 becomes large, the aggregate
sparsity patterns remain sparse, though the extended sparsity patterns become dense for
these SDPs.

Table 6: Numerical results on SDP relaxations of the maximum cut problems.

standard conversion completion sparsity
CPU memory CPU memory CPU memory aggregate extended

k1 × k2 (s) (MB) (s) (MB) (s) (MB) (%) (%)
2 × 500 2606.6 315 145.3 (2.0) 34 184.0 16 0.40 0.50
4 × 250 2823.0 315 250.4 (3.8) 52 214.0 17 0.45 0.86
5 × 200 2679.6 315 339.5 (4.4) 57 233.4 18 0.46 1.03
8 × 125 2659.8 315 211.8 (11.0) 70 256.9 19 0.47 1.38

10 × 100 2806.6 315 239.2 (12.8) 90 320.6 19 0.48 1.57
20 × 50 2806.2 315 520.2 (18.0) 170 348.1 22 0.49 2.12
25 × 40 2798.3 315 672.1 (58.1) 180 338.0 22 0.49 2.25

Problem size: n =1000, m =1000.

For the SDP relaxations of the maximum cut problem over lattice graphs, the conversion
and the completion methods performed much better than the “standard” method.

6.4 Graph partition problems over lattice graphs

Consider the same lattice graph G(V, E) defined in the previous subsection, and assume in
addition that n is an even number. The graph partition problem is a problem of finding a
partition (L, R) of V with the same cardinality, i.e., |L| = |R| = n/2, which minimizes the

19

cut c(L, R) =
∑

i∈L,j∈R Cij. In a similar way to the maximum cut problem, we can derive
an SDP relaxation of the graph partition problem:

minimize A0 • X
subject to Eii • X = 1/4 (i = 1, 2, . . . , n), E • X = 0, X ∈ Sn

+

}
. (13)

Here A0 and Eii (i = 1, 2, . . . , n) are the same matrices as defined previously, and E
denotes the n×n matrix with all elements one. Although (13) involves a dense data matrix
E, we can obtain an equivalent SDP with sparse aggregate sparsity pattern applying an
appropriate congruent transformation to it [8, section 6].

Table 7 compares the three methods for the transformed problems. As k1 becomes
large, the aggregate sparsity patterns remain sparse, though the extended sparsity patterns
become dense for them.

Table 7: Numerical results on SDP relaxations of the graph partition problems.

standard conversion completion sparsity
CPU memory CPU memory CPU memory aggregate sparsity

k1 × k2 (s) (MB) (s) (MB) (s) (MB) (%) (%)
2 × 500 3203.4 315 159.8 (2.9) 40 440.3 18 0.70 0.70
4 × 250 3157.6 315 157.8 (5.4) 46 563.5 23 1.05 1.10
5 × 200 3028.9 315 174.4 (6.6) 51 668.2 27 1.06 1.30
8 × 125 3538.7 315 318.1 (14.8) 75 807.3 25 1.07 2.39

10 × 100 3218.1 315 463.6 (24.9) 98 893.2 27 1.07 2.94
20 × 50 3079.9 315 1136.5 (19.3) 194 1323.8 32 1.08 4.97
25 × 40 3123.9 315 800.4 (71.1) 179 1334.2 34 1.08 5.31

Problem size: n =1000, m =1001.

For the SDP relaxations of the graph partition problems over lattice graphs, the conver-
sion method performed better than the other methods.

6.5 DIMACS implementation challenge problems

We have selected two SDPs from the 7th DIMACS implementation challenge problem library
(semidefinite and related optimization problems). These problems are SDP relaxations of
max-cut problems from the Ising model of spin glasses: toruspm3-8.50 and torusg3-8. The
aggregate sparsity patterns are sparse, but the extended sparsity patterns become dense for
them. Although the other DIMACS implementation challenge problems are sparse SDPs,
their aggregate sparsity patterns and/or their extended sparsity patterns become dense, and
therefore, they become out of scope of our approach.

Table 8 compares the three methods for these two problems which have the same sparse
aggregate sparsity patterns, and therefore the same extended sparsity patterns. Table 9
presents the termination error measure according to the DIMACS implementation challenge

20

criteria.

duality gap ≡ max(0, A0 • X −
∑m

p=1 bpzp),

primal feasibility error ≡
(∑m

p=1(Ap • X − bp)
2
)1/2

/(1 + maxp=1,2,...,m |bp|),
dual feasibility error ≡ ‖

∑m
p=1 Apzp + Y − A0‖F/(1 + maxi,j=1,2,...,n |[A0]ij|).

Table 8: Numerical results on DIMACS implementation challenge problems.

standard conversion completion sparsity
CPU memory CPU memory CPU memory aggregate sparsity

Problem name (s) (MB) (s) (MB) (s) (MB) (%) (%)
toruspm3-8-50 203.4 85 244.8 (8.9) 86 230.0 21 1.37 13.92
torusg3-8 294.0 85 347.0 (8.8) 86 262.1 21 1.37 13.92

Problem size: n =512, m =512.

Table 9: Termination errors of the DIMACS implementation challenge problems.

standard conversion completion
duality primal dual duality primal dual duality primal dual

Problem name gap feas. feas. gap feas. feas. gap feas. feas.
toruspm3-8-50 2.02e−04 3.02e−13 1.80e−15 1.96e−04 5.44e−12 1.22e−13 2.88e−04 2.52e−15 3.07e−12
torusg3-8 3.82e+01 2.88e−08 2.03e−15 3.66e+01 2.45e−08 1.03e−07 3.08e+01 5.20e−15 1.38e−12

The “standard” method performed better for the toruspm3-8-50 problem, though the
completion method performed better for the torusg3-8 problem. Considering the used mem-
ory, the completion method required the smallest amount of memory, but the conversion
method required a slightly large amount than the “standard” method.

These problems show that it is not advantageous to use the conversion method and/or
the completion method when the extended sparsity patterns are not sparse.

One way to deal with this drawback can be by combining these three methods in a
single software which selects the most appropriate method for each SDP by considering the
sparsity structure of the problem, and by estimating the necessary flops for each method
(see item (C) in Concluding remarks).

7 Concluding remarks

This article supplements Part I [8]. Here we have mostly focused on the implementation
details of the two methods proposed in [8] to solve large scale and sparse SDPs exploiting
their aggregate sparsity patterns over their data matrices via matrix completion.

In the conversion method, we have utilized the clique tree, which is related to the sparsity
structure of a given SDP, to obtain a “good” conversion of the given SDP into an equivalent
SDP having multiple but smaller size positive semidefinite matrix variables.

21

In the completion method, we have proposed new computational formulae which only
involve sparse matrices and construct internally positive definite matrix completions of the
primal matrix variables. These formulae are directly implemented inside the primal-dual
path-following interior-point method to solve a given SDP without converting it.

Some numerical experiments have been given to show the advantage of using these two
methods over the standard primal-dual path-following interior-point method for large scale
and sparse SDPs.

Finally, we address some implementation oriented issues that can improve the conversion
and completion methods.

(A) In the conversion method, we have proposed a very simple heuristic algorithm (Algo-
rithm 4.4) to merge the maximal cliques in the clique tree. One can consider alternate
strategies to merge the cliques like repeating successively Algorithm 4.4 for decreas-
ing σ’s in (7) or sharping criterion (7) by estimating the flops of one iteration of the
primal-dual interior-point method [7]. However, deriving a theoretical support for
“good” conversions seems a further step due to the combinatorial nature and compu-
tational complexity of the problem.

(B) A further change in the data structure can improve the performance of the completion
method through an efficient computation of the coefficient matrix B of the system of
linear equations (8). In the SDPA-C, each nonzero element of Ap (p = 0, 1, . . . , m) is
represented by its element and indices of its row and its column. Also the elements
of each Ap are organized in increasing order of the column indices. Hence, we can
efficiently extract the nonzero elements of each column of each Ap, but not a specific
(i, j) nonzero element. Changing the data structure so that it permits the latter
operations at low cost, we can carry out the computation of B more efficiently using
Algorithm 7.1 or Algorithm 7.2 instead of Algorithm 5.1.

Algorithm 7.1: Alternate algorithm 1 for the computation of B
Set B = O
for k, l = 1, 2, · · · , n

Compute v1 = N−T N−1ek and v2 = W−T DW−1el

for p = 1, 2, · · · , m
Compute t = vT

2 Apv1

for q = 1, 2, · · · , m with [Aq]lk �= 0
Compute t[Aq]lk and add to Bpq

end(for)
end(for)

end(for)

Algorithm 7.1 is more efficient when the data matrices Ap (p = 0, 1, . . . , m) and the
extended sparsity pattern F are sparse. On the other hand, Algorithm 7.2 works
efficiently even when the extended sparsity pattern becomes mildly dense.

(C) A general user who wants to solve a given SDP might be interested in a code which
automatically selects the most efficient method to solve the SDP. Unfortunately, the

22

Algorithm 7.2: Alternate algorithm 2 of computation of B
Set B = O
for p = 1, 2, · · · , m

for k = 1, 2, · · · , n
Compute v = N−T N−1ApW

−T DW−1ek

for l = 1, 2, · · · , n
for q = 1, 2, · · · , m with [Aq]lk �= 0

Compute vl[Aq]lk and add to Bpq

end(for)
end(for)

end(for)
end(for)

performance of the conversion and completion methods changes depending on the
sparsity of the data matrices Ap (p = 0, 1, . . . , m) and on the extended sparsity pattern
F . Therefore, detailed estimations of the flops for the proposed methods become
indispensable for this purpose. We observe also that the standard primal-dual path-
following interior-point method can be viewed as a particular case of the conversion
method for this analysis (if the merging of the cliques works successfully until the
end).

(D) In these two series of papers, we have proposed methods to efficiently solve SDPs for
large n (matrix size). On the other hand, the conjugate gradient (CG) method or the
conjugate residual (CR) method can be used to solve the system of linear equations
(8) when m (number of linear constraints) becomes large [4, 15, 17, 22]. In the CG and
CR methods, we need to multiply the coefficient matrix B by a vector several times,
instead of computing each element of B and storing them as we did here. Then, we
can employ similar algorithms to the ones in subsection 5.2 which explore the sparse
factorizations and the sparsity of the SDPs to multiply the coefficient matrix B by a
vector. Combining the completion method, and the CG or CR methods, we can solve
sparse SDPs with n and m large, though, it is known that the CG and CR methods
might fail to converge in some cases.

Acknowledgments

The authors thank Dr. John R. Gilbert of the Xerox Palo Alto Research Center for suggest-
ing us the ordering code [12], and Mr. Satoshi Nakamura of Tokyo Institute of Technology
for helping us with the numerical experiments.

References

[1] C. Ashcraft, D. Pierce, D. K. Wah and J. Wu, The reference manual for
SPOOLES, release 2.2: An object oriented software library for solving sparse lin-
ear systems of equations, Boeing Shared Services Group, P. O. Box 24346, Mail

23

Stop 7L-22, Seattle, WA 98124, January 1999; Available at http://netlib.bell-
labs.com/netlib/linalg/spooles/spooles.

[2] J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, in:
A. George, J. R. Gilbert and J. W. H. Liu, eds., Graph Theory and Sparse Matrix
Computation (Springer-Verlag, New York, 1993) 1–29.

[3] B. Borchers, CSDP 2.3 user’s guide, Optimization Methods & Software 11 & 12 (1999)
597–611; Available at http://www.nmt.edu/˜borchers/csdp.html.

[4] C. Choi and Y. Ye, Solving sparse semidefinite programs using the dual scaling algo-
rithm with an iterative solver, Department of Management Sciences, The University of
Iowa, Iowa City, IO 52242 March 2000.

[5] K. Fujisawa, M. Fukuda, M. Kojima and K. Nakata, Numerical evaluation of SDPA
(SemiDefinite Programming Algorithm), in: H. Frenk, K. Roos, T. Terlaky and
S. Zhang, eds., High Performance Optimization (Kluwer Academic Publishers, Dor-
drecht, 1999) 267–301.

[6] K. Fujisawa, M. Kojima and K. Nakata, SDPA (Semidefinite Programming Algo-
rithm) — User’s Manual —, Technical Report B-308, Department of Mathemat-
ical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Me-
guro, Tokyo 152-8552, Japan, December 1995 (revised August 1996); Available at
ftp://ftp.is.titech.ac.jp/pub/OpRes/software/SDPA.

[7] K. Fujisawa, M. Kojima and K. Nakata, Exploiting sparsity in primal-dual interior-
point methods for semidefinite programming, Mathematical Programming 79 (1997)
235–253.

[8] M. Fukuda, M. Kojima, K. Murota and K. Nakata, Exploiting sparsity in semidefinite
programming via matrix completion I: General framework, SIAM Journal on Opti-
mization 11 (2000) 647–674.

[9] R. Grone, C. R. Johnson, E. M. Sá and H. Wolkowicz, Positive definite completions of
partial hermitian matrices, Linear Algebra and its Applications 58 (1984) 109–124.

[10] C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, An interior-point method
for semidefinite programming, SIAM Journal on Optimization 6 (1996) 342–361.

[11] C. R. Johnson, Matrix completion problems: A survey, Proceedings of Symposia in
Applied Mathematics 40 (1990) 171–198.

[12] G. Karypis and V. Kumar, METIS — A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices,
version 4.0 —, Department of Computer Science/Army HPC Research Center, Univer-
sity of Minnesota, Minneapolis, MN 55455, September 1998; Available at http://www-
users.cs.umn.edu/˜karypis/metis/metis.

24

[13] M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidef-
inite linear complementarity problem in symmetric matrices, SIAM Journal on Opti-
mization 7 (1997) 86–125.

[14] J. G. Lewis, B. W. Peyton and A. Pothen, A fast algorithm for reordering sparse ma-
trices for parallel factorization, SIAM Journal on Scientific and Statistical Computing
10 (1989) 1146–1173.

[15] C.-J. Lin and R. Saigal, An incomplete Cholesky factorization for dense symmetric
positive definite matrices, BIT 40 (2000) 536–558.

[16] R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite program-
ming, SIAM Journal on Optimization 7 (1997) 663–678.

[17] K. Nakata, K. Fujisawa and M. Kojima, Using the conjugate gradient method in
interior-point methods for semidefinite programs (in Japanese), Proceedings of the In-
stitute of Statistical Mathematics 46 (1998) 297–316.

[18] Yu. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled
cones, SIAM Journal on Optimization 8 (1998) 324–364.

[19] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, Optimization Methods & Software 11 & 12 (1999) 625–653.

[20] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM Journal on Computing 13 (1984) 566–579.

[21] M. J. Todd, A study of search directions in primal-dual interior-point methods for
semidefinite programming, Optimization Methods and Software 11 & 12 (1999) 1–46.

[22] K. C. Toh and M. Kojima, Solving some large scale semidefinite programs via the
conjugate residual method, SIAM Journal on Optimization to appear.

[23] K. C. Toh, M. J. Todd and R. H. Tütüncü, SDPT3 — a MATLAB software package
for semidefinite programming, version 1.3, Optimization Methods & Software 11 & 12
(1999) 545–581; Available at http://www.math.nus.edu.sg/˜mattohkc.

[24] L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Review 38 (1996)
49–95.

25

