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Abstract

Considering that preprocessing is an important phase in linear programming, it

should be more systematically incorporated in semidefinite programming solvers.

The conversion method proposed by the authors (SIAM J. Optim., 11, 647–674

(2000), and Math. Program. (Series B), 95, 303–327 (2003)) is a preprocessing

method for sparse semidefinite programs based on matrix completion. This article
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proposed a new version of the conversion method which employs a flop estima-

tion function inside its heuristic procedure. Extensive numerical experiments are

included showing the advantage of preprocessing by the conversion method for cer-

tain classes of very sparse semidefinite programs.

Keywords: semidefinite programming, preprocessing, sparsity, matrix completion,

clique tree, numerical experiments

1 Introduction

Recently, Semidefinite Programming (SDP) has gained attention in several new fronts

such as global optimization of problems involving polynomials [13, 14, 18] and in quan-

tum chemistry [27] besides the well-known applications in system and control theory, in

relaxation of combinatorial optimization problems, etc.

These new classes of SDPs are characterized as large-scale and most of the time it

is challenging even to load the problem data in the physical memory of the computer.

As a practical compromise, we often restrict ourselves to solve sparse instances of these

large-scale SDPs.

Motivated by the need to solve such challenging SDPs, this article explores further

the preprocessing procedure named the conversion method and proposed in [8, 16]. The

conversion method explores the structural sparsity of SDP data matrices, converting a

given SDP into an equivalent SDP based on matrix completion theory. If the SDP data

matrices are very sparse and the matrix sizes are large, the conversion method produces

an SDP which can be solved faster and requires less memory than the original SDP when

solved by a primal-dual interior-point method [16].

The conversion method is a first step towards a general preprocessing phase for sparse

SDPs as is common in linear programming [1].

In this sense, we already proposed a general linear transformation which can enhance
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the sparsity of an SDP [8, Section 6]. Gatermann and Parrilo address another algebraic

transformation that can be interpreted as a preprocessing of SDPs under special conditions

which can transform the problems into block-diagonal SDPs [9]. Also, Toh recognizes the

importance of analyzing the data matrices to remove redundant constraints which can

cause degeneracy [22]. All of these procedures can be used for sparse and even for dense

SDPs.

We believe that further investigations are necessary to propose efficient preprocessing

to solve large-scale SDPs.

The main idea of the conversion method is as follows.

Let Sn denote the space of n×n symmetric matrices with the Frobenius inner-product

X • Y =
∑n

i=1

∑n
j=1 XijYij for X, Y ∈ Sn, and Sn

+ the subspace of n × n symmetric

positive semidefinite matrices. Given Ap ∈ Sn (p = 0, 1, . . . , m) and b ∈ R
m, we define

the standard equality form SDP by























minimize A0 • X

subject to Ap • X = bp (p = 1, 2, . . . , m),

X ∈ Sn
+,

(1)

and its dual by


































maximize
m

∑

p=1

bpyp

subject to

m
∑

p=1

Apyp + S = A0,

S ∈ Sn
+.

(2)

In this article, we are mostly interested in solving sparse SDPs where the data matrices

Ap (p = 0, 1, . . . , m) are sparse, and the dual matrix variable S = A0−
∑m

p=1 Apyp inherits

the sparsity of Ap’s.

The sparse structure of an SDP can be represented by the aggregate sparsity pattern
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of the data matrices (alternatively called aggregate density pattern in [5]):

E = {(i, j) ∈ V × V : [Ap]ij 6= 0 for some p ∈ {0, 1, . . . , m}}.

Here V denotes the set {1, 2, . . . , n} of row/column indices of the data matrices A0, A1, . . . , Am,

and [Ap]ij denotes the (i, j)th element of Ap ∈ Sn. It is also convenient to identify the

aggregate sparsity pattern E with the aggregate sparsity pattern matrix A(E) having

unspecified nonzero numerical values in E and zero otherwise.

In accordance with the ideas and definitions presented in [8, 16], consider a collection

of nonempty subsets C1, C2, . . . , Cℓ of V satisfying

(i) E ⊆ F ≡
ℓ

⋃

r=1

Cr × Cr;

(ii) Any partial symmetric matrix X̄ with specified elements X̄ij ∈ R ((i, j) ∈ F ) has a

positive semidefinite matrix completion (i.e., given any X̄ij ∈ R ((i, j) ∈ F ), there

exists a positive semidefinite X ∈ Sn such that Xij = X̄ij ∈ R ((i, j) ∈ F )) if and

only if the submatrices X̄CrCr
∈ SCr

+ (r = 1, 2, . . . , ℓ).

Here X̄CrCr
denotes the submatrix of X̄ obtained by deleting all rows/columns i /∈ Cr, and

SCr

+ denotes the set of positive semidefinite symmetric matrices with elements specified in

Cr × Cr. We can assume without loss of generality that C1, C2, . . . , Cℓ are maximal sets

with respect to set inclusion.
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Then, an equivalent formulation of the SDP (1) can be written as follows [16]:































































minimize
∑

(i,j)∈F

[A0]ijX
r̂(i,j)
ij

subject to
∑

(i,j)∈F

[Ap]ijX
r̂(i,j)
ij = bp (p = 1, 2, . . . , m),

Xr
ij = Xs

ij







(i, j) ∈ (Cr ∩ Cs) × (Cr ∩ Cs), i ≥ j,

(Cr, Cs) ∈ E , 1 ≤ r < s ≤ ℓ






,

X
r ∈ SCr

+ (r = 1, 2, . . . , ℓ),

(3)

where E is defined in Section 2, and r̂(i, j) = min{r : (i, j) ∈ Cr × Cr} is introduced to

avoid the addition of repeated terms. If we further introduce a block-diagonal symmetric

matrix variable of the form

X
′ =



















X
1

O · · · O

O X
2 . . .

...

...
. . .

. . . O

O · · · O X
ℓ



















,

and appropriately rearrange all data matrices A0, A1, . . . , Am, and the matrices corre-

sponding to the equalities Xr
ij = Xs

ij in (3) to have the same block-diagonal structure as

X
′, we obtain an equivalent standard equality primal SDP.

Observe that the original standard equality primal SDP (1) has a single matrix variable

of size n × n and m equality constraints. After the conversion, the SDP (3) has

(a) ℓ matrices of size nr × nr, nr ≤ n (r = 1, 2, . . . , ℓ), and

(b) m+ = m +
∑

(Cr ,Cs)∈E

g(Cr ∩ Cs) equality constraints where g(C) =
|C|(|C|+ 1)

2
,

where nr ≡ |Cr| denotes the number of elements of Cr.

In this article, we propose a new version of the conversion method which tries to

5



convert a sparse SDP by predicting a priori the number of flops required to solve it by a

primal-dual interior-point method. The original conversion method [8, 16] has a simple

heuristic routine based only on the matrix sizes (see Subsection 3.2) which can be deficient

in the sense of ignoring the actual computation of the numerical linear algebra in SDP

solvers. This work is an attempt to refine it, and a flop estimation function is introduced

for this purpose. The number of flops needed to compute the Schur Complement Matrix

(SCM) [6] and perform other computations such as factorization of the SCM, solving

triangular systems, and computing eigenvalues can be roughly estimated as a function

of equality constraints m, matrix sizes nr’s, and data sparsity. The parameters of the

newly introduced function are estimated by a simple statistical method based on ANOVA

(analysis of variance). Finally, this function is used in a new heuristic routine to generate

equivalent SDPs.

The new version of the conversion method is compared with the original version with

slight improvement and to solutions of SDPs without conversion through extensive nu-

merical experiments using SDPA 6.00 [25] and SDPT3 3.02 [23] on selected sparse SDPs

from different classes, as a tentative step towards detecting SDPs which are suitable for

the conversion method. We can conclude that preprocessing by the conversion method

becomes more advantageous when the SDPs are sparse. In particular, it seems that sparse

SDPs which have less than 5% on the extended sparsity pattern (see Section 2 for its def-

inition) can be solved very efficiently in general. Preprocessing by the conversion method

is very advisable for sparse SDPs since we can obtain a speed-up of 10 to 100 times in

some cases, and even in the eventual cases when solving the original problem is faster,

preprocessed SDPs take at most two times as long to solve in most of the cases considered

here.

Some other related work that also explores sparsity and matrix completions are the

completion method [8, 16], and its parallel version [17]. Also, Burer proposed a primal-

dual interior-point method restricted on the space of partial positive definite matrices
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[5].

The rest of the article is organized as follows. Section 2 reviews some graph-related

theory which has a strong connection with matrix completion. Section 3 presents the

general framework of the conversion method in a neat way, reviews the original version

in detail, and proposes a minor modification. Section 4 describes the newly proposed

conversion method which estimates the flops of each iteration of primal-dual interior-

point method solvers. Finally, Section 5 presents extensive numerical results comparing

the performance of the two conversion methods with SDPs without preprocessing.

2 Preliminaries

The details of this section can be found in [3, 8, 16] and references therein. Let G(V, E◦)

denote a graph where V = {1, 2, . . . , n} is the vertex set, and E◦ is the edge set defined

as E◦ = E\{(i, i) : i ∈ V }, E ⊆ V × V . A graph G(V, F ◦) is called chordal, triangulated

or rigid circuit if every cycle of length ≥ 4 has a chord (an edge connecting two non-

consecutive vertices of the cycle).

There is a close connection between chordal graphs and positive semidefinite matrix

completions that has been fundamental in the conversion method [8, 16], i.e., (ii) in the

Introduction holds if and only if the associated graph G(V, F ◦) of F given in (i) is chordal

[8, 10]. We further observe that remarkably the same fact was proved independently in

graphical models in statistics [15] known as decomposable models [24].

Henceforth, we assume that G(V, F ◦) denotes a chordal graph. We call F an extended

sparsity pattern of E and G(V, F ◦) a chordal extension or filled graph of G(V, E◦). Notice

that obtaining a chordal extension G(V, F ◦) from G(V, E◦) corresponds to adding new

edges to G(V, E◦) in order to make G(V, F ◦) a chordal graph.

Chordal graphs are well-known structures in graph theory, and can be characterized

for instance as follows. A graph is chordal if and only if we can construct a clique tree
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from it. Although there are several equivalent ways to define clique trees, we employ

the following one based on the clique-intersection property (CIP) which will be useful

throughout the article.

Let K = {C1, C2, . . . , Cℓ} be any family of maximal subsets of V = {1, 2, . . . , n}. Let

T (K, E) be a tree formed by vertices from K and edges from E ⊆ K×K. T (K, E) is called

a clique tree if it satisfies the clique-intersection property (CIP):

(CIP) For each pair of vertices Cr, Cs ∈ K, the set Cr ∩Cs is contained in every vertex

on the (unique) path connecting Cr and Cs in the tree.

In particular, we can construct a clique tree T (K, E) from the chordal extension

G(V, F ◦) if we take K = {C1, C2, . . . , Cℓ} as the family of all maximal cliques of G(V, F ◦),

and define appropriately the edge set E ⊆ K × K for T (K, E) to satisfy the CIP.

Clique trees can be computed efficiently from a chordal graph. We observe further

that clique trees are not uniquely determined for a given chordal graph. However, it is

known that the multiset of separators, i.e., {Cr ∩ Cs : (Cr, Cs) ∈ E}, is invariant for all

clique trees T (K, E) of a given chordal graph, a fact suitable for our purpose together

with the CIP.

The following two lemmas will be very important in the development of the conversion

method in the next section. Figure 1 illustrates Lemmas 2.1 and 2.2.

Lemma 2.1 [16] Let T (K, E) be a clique tree of G(V, F ◦), and suppose that (Cr, Cs) ∈ E.

We construct a new tree T ′(K′, E ′) merging Cr and Cs, i.e., replacing Cr, Cs ∈ K by

Cr ∪ Cs ∈ K′, deleting (Cr, Cs) ∈ E, and replacing all (Cr, C) ∈ E or (Cs, C) ∈ E by

(Cr ∪ Cs, C) ∈ E ′. Then T ′(K′, E ′) is a clique tree of G(V, F ′◦), where F ′ = {(i, j) ∈

C ′
r × C ′

r : r = 1, 2, . . . , ℓ′} for K′ = {C ′
1, C

′
2, . . . , C

′
ℓ′}, ℓ′ = ℓ − 1. Moreover, let m+ be

defined as in (b) (in the Introduction), and m′
+ be the corresponding one for T ′(K′, E ′).

Then m′
+ = m+ − g(Cr ∩ Cs).

8



Lemma 2.2 [16] Let T (K, E) be a clique tree of G(V, F ◦), and suppose that (Cr, Cq), (Cs, Cq) ∈

E. We construct a new tree T ′(K′, E ′) in the following way:

(i) If Cr ∪ Cs 6⊇ Cq, merge Cr and Cs, i.e., replace Cr, Cs ∈ K by Cr ∪ Cs ∈ K′ and

replace all (Cr, C) ∈ E or (Cs, C) ∈ E by (Cr ∪ Cs, C) ∈ E ′;

(ii) Otherwise, merge Cr, Cs and Cq, i.e., replace Cr, Cs, Cq ∈ K by Cr ∪ Cs ∪ Cq ∈

K′, delete (Cr, Cq), (Cs, Cq) ∈ E and replace all (Cr, C) ∈ E, or (Cs, C) ∈ E , or

(Cq, C) ∈ E by (Cr ∪ Cs ∪ Cq, C) ∈ E ′.

Then T ′(K′, E ′) is a clique tree of G(V, F ′◦), where F ′ = {(i, j) ∈ C ′
r×C ′

r : r = 1, 2, . . . , ℓ′}

for K′ = {C ′
1, C

′
2, . . . , C

′
ℓ′}, ℓ′ = ℓ − 1 (case i) and ℓ′ = ℓ − 2 (case ii). Moreover, let m+

be defined as in (b) (in the Introduction), and m′
+ be the corresponding one for T ′(K′, E ′).

Then, we have respectively

(i) m′
+ = m+ − g(Cr ∩ Cq) − g(Cs ∩ Cq) + g((Cr ∪ Cs) ∩ Cq) and;

(ii) m′
+ = m+ − g(Cr ∩ Cq) − g(Cs ∩ Cq).

3 Conversion Method

3.1 An Outline

An implementable conversion method is summarized in Algorithm 3.1. See [16] for details.

Algorithm 3.1 Input: sparse SDP; Output: Equivalent SDP with small block matri-

ces;

Step 1. Read the SDP data and determine the aggregate sparsity pattern E.

Step 2. Find an ordering of rows/columns V = {1, 2, . . . , n} which possibly provides

less fill-in in the aggregate sparsity matrix A(E) (e.g., Spooles 2.2 [2] and METIS 4.0.1

[11]).
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Figure 1: Illustration of Lemmas 2.1 and 2.2. Clique tree T (K, E) before the merging
(above), clique tree T ′(K′, E ′) after the merging (middle), and the associate chordal graph
(bottom). Dotted lines denote the edges added to the graph due to the clique merging.

Step 3. From the ordering above, perform a symbolic Cholesky factorization on A(E)

associated with G(V, E◦) to determine a chordal extension G(V, F ◦).

Step 4. Compute a clique tree T (K, E) from G(V, F ◦).

Step 5. Use some heuristic procedure to reduce the overlaps Cr ∩ Cs between adja-

cent cliques, i.e., (Cr, Cs) ∈ E such that Cr, Cs ∈ K, and determine a new clique tree

T ∗(K∗, E∗).

Step 6. Convert the original SDP (1) into (3) using information on T ∗(K∗, E∗).

One of the most important considerations in the conversion method is to obtain a suit-

able chordal extension G(V, F ◦) of G(V, E◦) which allows us to apply a positive semidef-

inite matrix completion to the original sparse SDP (1).

We also known that a chordal extension G(V, F ◦) of G(V, E◦) can be obtained easily

if we perform a symbolic Cholesky factorization on the aggregate sparsity pattern matrix

10



A(E) according to any reordering of V = {1, 2, . . . , n}. Unfortunately, the problem of

finding such an ordering which minimizes the fill-in in A(E) is NP-complete. Therefore,

we rely on some heuristic packages to determine an ordering which possibly gives less

fill-in in Step 2.

Once we have a clique tree T (K, E) at Step 4, we can obtain an SDP completely

equivalent to the original one, with smaller block matrices, but with a larger number of

equality constraints after Step 6. This step consists in visiting once each of the cliques

in the clique tree T ∗(K∗, E∗) in order to determine the overlapping elements of Cr ∩ Cs

((Cr, Cs) ∈ E∗, Cr, Cs ∈ K∗). However, as mentioned in the Introduction, we finally

obtain an SDP with

(a’) ℓ∗ = |K∗| matrices of size nr × nr, |Cr| ≡ nr ≤ n (r = 1, 2, . . . , ℓ∗), and

(b’) m+ = m +
∑

(Cr ,Cs)∈E
∗

g(Cr ∩ Cs) equality constraints.

If we opt for a chordal extension G(V, F ◦) that gives as little fill-in as possible at

Step 3 (and therefore an ordering at Step 2), we obtain an SDP (3) with ℓ∗ smallest

block matrices as possible of size nr (r = 1, 2, . . . , ℓ∗), and more crucially, a large number

of equality constraints m+ ≫ m. One of the keys to obtaining a good conversion is to

balance the factors (a’) and (b’) above to minimize the number of flops required by an SDP

solver. Therefore, there is a necessity to use at Step 5 a heuristic procedure that directly

manipulates the clique trees, which in practice means that we are adding new edges to

the chordal graph G(V, F ◦) to create a new chordal graph G(V, (F ∗)◦) with F ∗ ⊇ F and

a corresponding clique tree T ∗(K∗, E∗), which has less overlaps between adjacent cliques.

One can also consider an algorithm that avoids all of these manipulations and finds

an ordering at Step 2 which gives the best chordal extension (and a clique tree), and,

therefore, makes Step 5 unnecessary. However, this alternative seems beyond reach due

to the complexity of the problem: predicting flops of a sophisticated optimization solver
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from the structure of the feeding data, and producing the best ordering of rows/columns

of the aggregate sparsity matrix A(E).

Therefore, we consider Algorithm 3.1 to be a pragmatic strategy for the conversion

method.

The details of Step 5 are given in the next subsection.

3.2 A Simple Heuristic Algorithm to Balance the Sizes of SDPs

We will make use of Lemmas 2.1 and 2.2 here. These lemmas give us a sufficient condition

for merging the cliques in the clique tree without losing the CIP. Once we merge two

cliques Cr and Cs, this will reduce the total number of block matrices by one, the number

of equality constraints by g(Cr ∩Cs), and increase the size of one of block matrices in (3)

in the simplest case (Lemma 2.1). Also, observe that these operations add extra edges to

the chordal graph G(V, F ◦) to produce a chordal graph G(V, (F ∗)◦) which is associated

with the clique tree T ∗(K∗, E∗).

As we have mentioned before, it seems very difficult to find an exact criterion to

determine whether two maximal cliques Cr and Cs satisfying the hypothesis of Lemmas

2.1 or 2.2 should be merged so as to balance the factors (a’) and (b’) in terms of flops.

Therefore, we have adopted one simple criterion [16].

Let ζ ∈ (0, 1). We decide to merge the cliques Cr and Cs in T (K, E) if

h(Cr, Cs) ≡ min

{

|Cr ∩ Cs|

|Cr|
,
|Cr ∩ Cs|

|Cs|

}

≥ ζ. (4)

Although criterion (4) is not perfect, it takes into account the sizes of the cliques Cr

and Cs involved, and compares them with the size of common indices |Cr ∩ Cs|. Also,

the minimization among the two quantities avoids the merging of a large and a small

clique which share a reasonable number of indices when compared with the smaller one.

In particular, this criterion ignores the smaller of |Cr| and |Cs|.
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Again, we opt for a specific order to merge the cliques in the clique tree as given in

Algorithm 3.2 [16]. Variations are possible but seem too demanding for our final purpose.

Here we introduce a new parameter η, which was not considered in the previous

version [16], since we think that the number of equality constraints in (3) must diminish

considerably when merging cliques to reduce the overall computational time after the

conversion.

Algorithm 3.2 Diminishing the number of maximal cliques in the clique tree

T (K, E).

Choose a maximal clique in K to be the root for T (K, E), and let ζ, η ∈ (0, 1)

for each maximal clique C which was visited for the last time in T (K, E) in a depth-first

search

Set Cq = C

for each pair of descendents Cr and Cs of Cq in T (K, E)

if criterion (4) is satisfied (and m′
+ < ηm+ if Lemma 2.2 (i) applies)

then merge Cr and Cs (or Cq, Cr and Cs), and let T (K, E) = T ′(K′, E ′)

end(for)

Set Cr = C

for each descendent Cs of Cr in T (K, E)

if criterion (4) is satisfied

then merge Cr and Cs and let T (K, E) = T ′(K′, E ′)

end(for)

end(for)

Unfortunately in practice, the best choice for the parameters given above depends on

the SDP. In Subsection 4.2 we will try to estimate the “best parameter” using a statistical

method. The inclusion of the new parameter η, and the estimation of good values for

both parameters ζ and η in (4), makes Algorithm 3.2 an improvement over the previous

one [16].
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4 Conversion Method with Flop Estimation

So far, we have presented the algorithms implemented in [16] with a slight modification.

Our proposal here is to replace criterion (4) with a new one which approximately predicts

the flops required by an SDP solver.

4.1 Estimating Flops Required by SDP Codes

At first, we will restrict our discussion to a particular solver: SDPA 6.00 [25] which is an

implementation of the Mehrotra-type primal-dual predictor-corrector infeasible interior-

point method using the HRVW/KSH/M direction.

The actual flop counts of sophisticated solvers are very complex and difficult to predict.

They depend not only on the sizes and the structure of a particular SDP, but also on

the actual data, sparsity, degeneracy of the problem, etc. However, we know a rough

estimation of the number of flops per iteration required by a primal-dual interior-point

method. The main cost is computing the SCM. Other requirements are: O(m3) flops

for the Cholesky factorization to solve the linear system of the SCM; O(
∑ℓ

r=1 n3
r) flops

for the multiplication of matrices of size nr × nr and O(m
∑ℓ

r=1 n2
r) flops to evaluate m

inner-products between matrices of size nr × nr to determine the search direction; and

finally O(
∑ℓ

r=1 n3
r) flops to compute the minimum eigenvalues of matrices of size nr × nr

to determine the step length, in the case when all data matrices are dense. See [6] for

details.

In particular, SDPA 6.00 considers the sparsity of the data matrices Ap (p = 1, 2, . . . , m),

and employs the formula F∗ [7] to compute the SCM. We assume henceforth that all data

matrices Ap (p = 0, 1, . . . , m) have the same block-diagonal matrix structure consisting

of ℓ block matrices with dimensions nr × nr (r = 1, 2, . . . , ℓ) each.

For each p = 1, 2, . . . , m and r = 1, 2, . . . , ℓ, let fp(r) denote the number of nonzero

elements of Ap for the corresponding block matrix with index r. Analogously, fΣ(r)
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denotes the number of nonzero elements of A(E) for the corresponding block matrix. In

the following discussion of flop estimates, there will be no loss of generality in assuming

that fp(r) (p = 1, 2, . . . , m) are sorted in non-increasing order for each r = 1, 2, . . . , ℓ

fixed.

Given a constant κ ≥ 1, the cost of computing the SCM is given by

ℓ
∑

r=1

S(f1(r), f2(r), . . . , fm(r), nr)

where

S(f1(r), f2(r), . . . , fm(r), nr) =
m

∑

p=1

min{κnrfp(r) + n3
r + κ

m
∑

q=p

fq(r),

κnrfp(r) + κ(nr + 1)

m
∑

q=p

fq(r),

κ(2κfp(r) + 1)
m

∑

q=p

fq(r)}.

(5)

Considering also the sparsity of block matrices, we introduce the term nrfΣ(r) for each

r = 1, 2, . . . , ℓ. In particular, fΣ(r) becomes equal to n2
r if the corresponding block matrix

is dense in A(E).

We propose the following formula for the flop estimate of each iteration of the primal-

dual interior-point method. Let α, β, γ > 0,

Cα,β,γ(f1, f2, . . . , fm, m, n1, n2, . . . , nℓ)

=

ℓ
∑

r=1

S(f1(r), f2(r), . . . , fm(r), nr) + αm3 + β

ℓ
∑

r=1

n3
r + γ

ℓ
∑

r=1

nrfΣ(r).
(6)

Observe that the term O(m
∑ℓ

r=1 n2
r) was not include in the proposed formula for reasons

to be explained next.

Our goal is to replace criterion (4) which determines whether we should merge the

cliques Cr and Cs in T (K, E). Therefore we just need to consider the difference of (6)
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before and after merging Cr and Cs to determine if it is advantageous or not to execute

this operation (see Step 5 of Algorithm 3.1). Consider the most complicated case in

Lemma 2.2 (ii): we decide to merge if

C
before
α,β,γ (f1, f2, . . . , fm,m, n1, n2, . . . , nr, ns, nq, . . . , nℓ)

−C
after
α,β,γ (f1, f2, . . . , fm+

,m+, n1, n2, . . . , nt, . . . , nℓ′)

= S(f1(r), f2(r), . . . , fm(r), nr) + S(f1(s), f2(s), . . . , fm(s), ns) + S(f1(q), f2(q), . . . , fm(q), nq)

−S(f1(t), f2(t), . . . , fm+
(t), nt) + α(m3 − m3

+) + β(n3
r + n3

s + n3
q − n3

t )

+γ(nrfΣ(r) + nsfΣ(s) + nqfΣ(q) − ntfΣ(t)) > 0,

(7)

where t denotes a new index of a block matrix (clique) after merging Cr, Cs and Cq,

nt = |Cr ∪ Cs ∪ Cq| = |Cr ∪ Cs|, and ℓ′ = ℓ − 2. Criterion (7) has the advantage of just

carrying out the computation of corresponding block matrices (cliques). The inclusion

of O(m
∑ℓ

r=1 n2
r) in (6) would complicate the evaluation of (7) since it would involve

information on all block matrices, and therefore cause a substantial overhead.

Another simplification we imposed in the actual implementation was to replace fΣ(·)

by f ′
Σ(·),

fΣ(nt) ≥ f ′
Σ(nt) ≡ max{fΣ(r), fΣ(s), fΣ(r) + fΣ(s) − |Cr ∩ Cs|

2}

which avoids recalculating the non-zero elements of each corresponding block matrix at

every evaluation of (7). We observe however that fp(r) (p = 1, 2, . . . , m+, r = 1, 2, . . . , ℓ′)

can be always retrieved exactly.

The remaining cases in Lemma 2.1 and Lemma 2.2 (i) follow analogously.

Preliminary numerical experiments using criterion (7) showed that its computation is

still very expensive even after several simplifications. Therefore, we opted to implement

Algorithm 4.1 which is similar to Algorithm 3.2 and utilizes a hybrid criterion with (4).
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Algorithm 4.1 Diminishing the number of maximal cliques in the clique tree

T (K, E).

Choose a maximal clique in K to be the root for T (K, E), and let 0 < ζmin < ζmax < 1,

and α, β, γ > 0.

for each maximal clique C which was visited for the last time in T (K, E) in a depth-first

search

Set Cq = C

for each pair of descendents Cr and Cs of Cq in T (K, E)

if criterion (4) is satisfied for ζmax

then merge Cr and Cs (or Cq, Cr and Cs), and let T (K, E) = T ′(K′, E ′)

elseif criterion (4) is satisfied, for ζmin

if criterion (7) is satisfied

then merge Cr and Cs (or Cq, Cr and Cs), and let T (K, E) = T ′(K′, E ′)

end(for)

Set Cr = C

for each descendent Cs of Cr in T (K, E)

if criterion (4) is satisfied for ζmax

then merge Cr and Cs and let T (K, E) = T ′(K′, E ′)

elseif criterion (4) is satisfied, for ζmin

if criterion (7) is satisfied with the terms corresponding to nq and Cq removed

then merge Cr and Cs and let T (K, E) = T ′(K′, E ′)

end(for)

end(for)

Algorithm 4.1 utilizes the new criterion (7) if ζmin ≤ h(Cr, Cs) < ζmax. If h(Cr, Cs) ≥

ζmax, we automatically decide to merge. If h(Cr, Cs) < ζmin, we do not merge. This

strategy avoids excessive evaluation of (7) when a decision to merge the cliques or not is

almost clear from the clique tree.
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As in Algorithm 3.2, it remains a critical question as to how we choose the parameters;

α, β, γ > 0 in Algorithm 4.1, and ζ, η ∈ (0, 1) in Algorithm 3.2.

Although we are mainly focusing on SDPA 6.00, we believe that the same algorithm

and criterion can be adopted for SDPT3 3.02 [23] with the HRVW/KSH/M direction since

it also utilizes the formula F∗ [7] to compute the SCM, and it has the same complexity

order at each iteration of the primal-dual interior-point method. Therefore, we have also

considered it in our numerical experiments.

4.2 Estimating Parameters for the Best Performance

Estimating parameters ζ, η ∈ (0, 1) in Algorithm 3.2, and α, β, γ > 0 in Algorithm 4.1

is not an easy task. In fact, our experience tell us that each SDP has its “best parame-

ters”. Nevertheless, we propose the following way to determine the possibly best universal

parameters ζ, η, α, β, and γ.

We consider four classes of SDP from [16] as our benchmark problems, i.e., norm

minimization problems, SDP relaxation of quadratic programs with box constraints, SDP

relaxation of max-cut problems over lattice graphs, and SDP relaxation of graph parti-

tioning problems (see Subsection 5.1).

Then we use a technique which combines the analysis of variance (ANOVA) [20] and

the orthogonal arrays [19] described in [21], and we try to estimate the universal param-

eters. The ANOVA is in fact a well-known method to detect the most significant factors

(parameters). However, it is possible to determine the best values for the parameters in

the process of computing them. Therefore, repeating ANOVA for different sets of param-

eter values, we can hopefully obtain the best parameters for our benchmark problems. In

addition, the orthogonal arrays allow us to avoid making experiments with all possible

combinations of parameter values. Details of the method are beyond the scope of this

paper and are therefore omitted.

We conducted our experiments on two different computers to verify the sensitivity of
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the parameters: computer A (Pentium III 700MHz with a level 1 data cache of 16KB, level

2 cache of 1MB, and main memory of 2GB) and computer B (Athlon 1.2GHz with a level

1 data cache of 64KB, level 2 cache of 256KB, and main memory of 2GB). Observe that

they have different CPU chips and foremost, different cache sizes which have a relative

effect on the performance of numerical linear algebra subroutines used in each of the

codes.

We obtained the following parameters given in Table 1 for SDPA 6.00 [25] and SDPT3

3.02 [23].

Table 1: Parameters for Algorithms 3.2 and 4.1 on computers A and B when using SDPA
6.00 and SDPT3 3.02.

computer A computer B
code ζ η α β γ ζ η α β γ

SDPA 6.00 0.065 0.963 0.50 36 11 0.055 0.963 0.72 16 9
SDPT3 3.02 0.095 1.075 0.70 20 46 0.085 0.925 0.58 12 50

5 Numerical Experiments

We report in this section the numerical experiments on the performance of proposed

versions of the conversion method, i.e., the original version with a new parameter in its

heuristic procedure (Subsection 3.2) and the newly proposed one which estimates the flops

of each iteration of SDP solvers (Subsection 4.1).

Among the major codes to solve SDPs, we chose the SDPA 6.00 [25] and the SDPT3

3.02 [23]. Both codes are implementations of the Mehrotra-type primal-dual predictor-

corrector infeasible interior-point method. In addition, they use the HRVW/KSH/M

search direction and the subroutines described in Subsection 4.1 (see also [7]) to compute

the SCM on which our newly proposed conversion flop estimation version partially relies.

Three different sets of SDPs were tested, and they are reported in the next subsections.
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Subsection 5.1 reports results on the SDPs we used to estimate the parameters (see

Subsection 4.2), and the same parameters were used for the SDPs in Subsections 5.2,

and 5.3. The parameter κ in (5) was fixed to 2.2. The parameters ζmin and ζmax in

Algorithm 4.1 were empirically fixed to 0.035 and 0.98, respectively, using the benchmark

problems in Subsection 5.1.

In the tables that follows, the original problem sizes are given by the number of equality

constraints m, the number of rows of each block matrix n (where “d” after a number

denotes a diagonal matrix), and the sparsity of problems which can be partially understood

from the percentages of the aggregate and extended sparsity patterns (Section 2).

In each of numerical result tables, “standard” means the time to solve the correspond-

ing problem by the SDPA 6.00 (or SDPT3 3.02) only, “conversion” is the time to solve the

equivalent SDP after its conversion by the original version with the new parameter pro-

posed in Subsection 3.2, and “conversion-fe” is the time to solve the equivalent SDP after

its conversion by the version proposed in Subsection 4.1 (“fe” stands for “flop estimate”).

The numbers between parentheses are the time for the “conversion” and “conversion-fe”.

Entries with “=” mean that the converted SDPs became exactly the same as before the

conversion. m+ is the number of equality constraints and nmax gives the sizes of the three

largest block matrices after the respective conversion. Bold font numbers indicate the

best timing and the ones which are at most 110% of the best timing among “standard”,

“conversion”, and “conversion-fe” including the time for the conversion themselves. In

this comparison of time, we ignored the final relative duality gaps and feasibility errors

(defined next) specially in the Tables 9 and 10 on structural optimization problems.

We utilized the default parameters both for SDPA 6.00 and SDPT3 3.02 except that

λ∗ was occasionally changed for SDPA 6.00, and OPTIONS.gaptol was set to 10−7 and

OPTIONS.cachesize was set according to the computer for SDPT3 3.02. When the solvers
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fail to solve an instance, we report the relative duality gap denoted by “rg”,

(for SDPA) (for SDPT3)

|A0•X−
P

m

p=1 bpyp|

max{1.0,(|A0•X |+|
P

m

p=1
bpyp|)/2}

, X•S
max{1.0,(|A0•X |+|

P

m

p=1
bpyp|)/2}

,
(8)

and/or the feasibility error, denoted by “fea”,

(primal feasilibity error for SDPA) (dual feasilibity error for SDPA)

max{|Ap • X − bp| : p = 1, 2, . . . , m}, max

{∣

∣

∣

∣

[

∑m
p=1 Apyp + S − C

]

ij

∣

∣

∣

∣

: i, j = 1, 2, . . . , n

}

,

(primal feasilibity error for SDPT3) (dual feasilibity error for SDPT3)
q

P

m

p=1
(Ap•X−bp)2

max{1.0,‖b‖2}
,

‖
P

m

p=1
Apyp+S−C‖

2

max{1.0,‖C‖2}
,

(9)

respectively. To save space, the negative log10 values of these quantities are reported.

For instance “rg”=2 means that the relative duality gap is less than 10−2 and “fea”=p6

means that the primal feasibility error is less than 10−6. When “rg” and “fea” are less

than the required accuracy 10−7, they are omitted in the tables.

Finally, the numerical results for SDPA 6.00 and SDPT3 3.02 show very similar be-

haviors. Therefore, to keep the essence of the comparison and avoid lengthy tables, we

decided to not include the numerical results for SDPT3 3.02, and instead just point out

the relevant differences in each of the corresponding subsections.

5.1 Benchmark Problems

The sizes of our benchmark SDPs, i.e., norm minimization problems, SDP relaxation

of quadratic programs with box constraints, SDP relaxation of max-cut problems over

lattice graphs, and SDP relaxation of graph partitioning problems, are shown in Table 2.

The original formulation of graph partitioning problems gives a dense aggregate sparsity

pattern not allowing us to use the conversion method, and therefore we previously applied

an appropriate congruent transformation [8, Section 6] to them.
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Table 2: Sizes and percentages of the aggregate and extended sparsity patterns of norm
minimization problems, SDP relaxation of quadratic programs with box constraints, SDP
relaxation of maximum cut problems, and SDP relaxation of graph partition problems.

problem m n aggregate (%) extended (%)

norm1 11 1000 0.30 0.30
norm2 11 1000 0.50 0.50
norm5 11 1000 1.10 1.10
norm10 11 1000 2.08 2.09
norm20 11 1000 4.02 4.06
norm50 11 1000 9.60 9.84

qp3.0 1001 1001,1000d 0.50 2.83
qp3.5 1001 1001,1000d 0.55 4.56
qp4.0 1001 1001,1000d 0.60 6.43
qp4.5 1001 1001,1000d 0.66 8.55
qp5.0 1001 1001,1000d 0.70 10.41

mcp2×500 1000 1000 0.40 0.50
mcp4×250 1000 1000 0.45 0.86
mcp5×200 1000 1000 0.46 1.03
mcp8×125 1000 1000 0.47 1.38
mcp10×100 1000 1000 0.48 1.57
mcp20×50 1000 1000 0.49 2.12
mcp25×40 1000 1000 0.49 2.25

gpp2×500 1001 1000 0.70 0.70
gpp4×250 1001 1000 1.05 1.10
gpp5×200 1001 1000 1.06 1.30
gpp8×125 1001 1000 1.07 2.39
gpp10×100 1001 1000 1.07 2.94
gpp20×50 1001 1000 1.08 4.97
gpp25×40 1001 1000 1.08 5.31

The discussion henceforth considers the advantages in terms of the computational

time.

Tables 3 and 4 give the results for SDPA 6.00 on computers A and B, respectively.

For the norm minimization problems, it is advantageous to apply the “conversion”. For

the SDP relaxations of maximum cut problems and graph partitioning problems, it seems

that “conversion” and “conversion-fe” are better than “standard”. However, for the SDP

relaxation of quadratic programs, no conversion is ideal. This result is particularly in-

triguing since the superiority of the “conversion” was clear when using SDPA 5.0 [16], and
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Table 3: Numerical results on norm minimization problems, SDP relaxation of quadratic
programs with box constraints, SDP relaxation of maximum cut problems, and SDP
relaxation of graph partition problems for SDPA 6.00 on computer A.

standard conversion conversion-fe
problem time (s) m+ nmax time (s) m+ nmax time (s)

norm1 691.1 77 16,16,16 2.3 (4.3) 58 29,29,29 2.9 (1.8)
norm2 820.2 113 31,31,31 4.7 (4.4) 71 58,58,58 7.4 (2.7)
norm5 1047.4 206 77,77,77 15.4 (4.5) 116 143,143,143 33.6 (9.0)
norm10 1268.8 341 154,154,154 50.4 (5.8) 231 286,286,286 138.1 (34.2)
norm20 1631.7 641 308,308,308 192.6 (8.9) 221 572,448 514.3 (182.9)
norm50 2195.5 1286 770,280 1093.0 (20.2) 11 1000 = (20.0)
qp3.0 895.4 1373 816,22,19 916.1 (34.3) 1219 864,21,18 847.4 (41.8)
qp3.5 891.5 1444 844,20,18 1041.5 (39.3) 1249 875,18,12 890.2 (45.2)
qp4.0 891.0 1636 856,26,20 1294.5 (48.2) 1420 883,20,13 1084.5 (53.4)
qp4.5 891.4 1431 905,15,10 1163.6 (63.2) 1284 930,10,9 1028.3 (68.4)
qp5.0 892.7 1515 909,12,11 1206.3 (74.4) 1381 922,12,11 1045.9 (79.4)
mcp2×500 822.6 1102 31,31,31 91.8 (1.1) 1051 58,58,58 53.0 (4.4)
mcp4×250 719.0 1236 64,63,63 96.4 (2.1) 1204 118,116,115 97.5 (5.7)
mcp5×200 764.9 1395 91,82,82 153.5 (2.5) 1317 156,149,146 125.5 (6.3)
mcp8×125 662.8 1343 236,155,134 100.7 (5.5) 1202 240,236,233 72.3 (12.3)
mcp10×100 701.1 1547 204,172,161 129.0 (7.8) 1196 301,296,227 88.7 (14.7)
mcp20×50 653.1 1657 367,312,307 149.8 (19.3) 1552 570,367,75 221.5 (25.2)
mcp25×40 690.7 1361 622,403,5 246.1 (30.3) 1325 584,441 225.2 (46.1)
gpp2×500 806.1 1133 47,47,47 77.7 (1.7) 1073 86,86,86 53.4 (5.7)
gpp4×250 814.3 1181 136,77,77 64.4 (2.8) 1106 143,143,143 56.5 (8.1)
gpp5×200 807.5 1211 130,93,93 67.7 (3.5) 1106 172,172,172 63.8 (10.4)
gpp8×125 806.1 1472 170,166,159 119.5 (6.8) 1392 319,290,272 144.6 (14.1)
gpp10×100 798.9 1809 236,208,203 195.1 (10.6) 1263 396,339,296 151.2 (23.4)
gpp20×50 799.6 1679 573,443,35 314.5 (18.2) 1379 566,461 293.7 (21.1)
gpp25×40 808.3 1352 526,500 268.3 (39.2) 1904 684,353 436.3 (82.2)

SDPA 6.00 mainly differs from SDPA 5.0 in the numerical linear algebra library where

Meschach was replaced by ATLAS/LAPACK in the latest version.

Comparing the results on computers A and B, they have similar trends except that it

is faster to solve the norm minimization problems on computer A than computer B due

to its cache size.

Similar results were observed for SDPT3 3.02 on computers A and B. Details are

not shown here. However, for SDPT3 3.02, “conversion” or “conversion-fe” is sometimes

better than “standard” on the SDP relaxation of quadratic programs. Also, the compu-

tational time for the norm minimization problems is not faster on computer A than on

computer B as was observed for SDPA 6.00.

We observe that for “conversion-fe”, all of the converted problems in the corresponding

tables are the same for computers A and B, and for both SDPA 6.00 and SDPT3 3.02,
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Table 4: Numerical results on norm minimization problems, SDP relaxation of quadratic
programs with box constraints, SDP relaxation of maximum cut problems, and SDP
relaxation of graph partition problems for SDPA 6.00 on computer B.

standard conversion conversion-fe
problem time (s) m+ nmax time (s) m+ nmax time (s)

norm1 303.9 66 19,19,19 1.2 (1.9) 51 29,29,29 1.4 (0.7)
norm2 462.0 95 37,37,37 2.5 (1.8) 68 58,58,58 3.6 (1.3)
norm5 1181.3 176 91,91,91 9.3 (2.3) 116 143,143,143 17.4 (4.2)
norm10 2410.4 286 182,182,182 43.2 (3.4) 176 286,286,286 77.1 (14.9)
norm20 2664.5 431 364,364,312 251.9 (6.0) 221 572,448 1350.2 (110.3)
norm50 2970.3 1286 910,140 2632.2 (15.4) 11 1000 = (15.2)
qp3.0 349.4 1287 843,22,19 493.3 (18.5) 1219 864,21,18 447.9 (20.7)
qp3.5 348.1 1391 853,20,18 580.7 (22.4) 1249 875,18,12 474.6 (24.7)
qp4.0 347.8 1601 861,26,20 789.2 (32.4) 1420 883,20,13 631.9 (34.6)
qp4.5 349.0 1399 915,15,10 626.9 (46.9) 1284 930,10,9 540.3 (49.1)
qp5.0 347.5 1514 910,12,11 709.5 (59.0) 1381 922,12,11 574.6 (60.3)
mcp2×500 268.3 1084 37,37,37 49.2 (0.7) 1051 58,58,58 35.1 (2.2)
mcp4×250 234.2 1204 85,75,75 56.0 (1.2) 1204 118,116,115 67.2 (2.9)
mcp5×200 250.7 1295 106,96,94 73.0 (1.6) 1317 156,149,146 95.2 (3.2)
mcp8×125 221.5 1340 160,155,154 52.7 (3.2) 1202 240,236,233 36.2 (6.8)
mcp10×100 233.1 1615 233,201,187 101.5 (4.0) 1196 301,296,227 42.1 (8.2)
mcp20×50 215.6 1330 581,392,62 84.2 (8.3) 1552 570,367,75 102.8 (14.6)
mcp25×40 228.4 1325 567,458 87.2 (18.3) 1406 650,378 100.5 (33.5)
gpp2×500 265.5 1109 55,55,55 44.7 (1.0) 1073 86,86,86 31.9 (2.8)
gpp4×250 267.1 1151 140,91,91 34.7 (1.8) 1106 143,143,143 29.9 (4.4)
gpp5×200 265.3 1169 168,110,110 34.0 (2.3) 1106 172,172,172 32.5 (5.5)
gpp8×125 265.0 1337 202,177,176 49.2 (4.7) 1392 319,290,272 93.3 (7.6)
gpp10×100 253.4 1536 277,277,242 107.9 (7.0) 1263 396,339,296 62.0 (13.5)
gpp20×50 262.4 2030 512,491,39 179.7 (9.4) 1379 566,461 112.3 (10.9)
gpp25×40 264.1 1352 526,500 103.2 (22.1) 1904 689,353 183.7 (47.6)

respectively, excepting for “norm1”, “norm2”, “norm10”, and “mcp25×40”.

Summing up, preprocessing by “conversion” or “conversion-fe” produces in the best

case a speed-up of about 140 times for “norm1” using SDPA 6.00, and about 14 times for

SDPT3 3.02, when compared with “standard”, even including the time for the conversion

itself. And in the worse case “qp4.0” the running time is only 2.4 times more than

“standard”.

5.2 SDPLIB Problems

The next set of problems are from the SDPLIB 1.2 collection [4]. We selected the problems

which have sparse aggregate sparsity patterns including the ones after the congruent

transformation [8, Section 6] like “equalG”, “gpp”, and “theta” problems. We excluded

the small instances because we are interested in large-scale SDPs, and also the large ones
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because of the insufficiency of memory. Problem sizes and sparsity information are shown

in Table 5. Observe that in several cases, the fill-in effect causes the extended sparsity

patterns to become much denser than the corresponding aggregate sparsity patterns.

Table 5: Sizes and percentages of the aggregate and extended sparsity patterns of SDPLIB
problems.

problem m n aggregate (%) extended (%)

equalG11 801 801 1.24 (A) 4.32, (B) 4.40
equalG51 1001 1001 4.59 (A) 52.99, (B) 53.37

gpp250-1 251 250 5.27 31.02
gpp250-2 251 250 8.51 52.00
gpp250-3 251 250 16.09 72.31
gpp250-4 251 250 26.84 84.98
gpp500-1 501 500 2.56 28.45
gpp500-2 501 500 4.42 46.54
gpp500-3 501 500 7.72 66.25
gpp500-4 501 500 15.32 83.06

maxG11 800 800 0.62 2.52
maxG32 2000 2000 0.25 1.62
maxG51 1000 1000 1.28 13.39

mcp250-1 250 250 1.46 3.65
mcp250-2 250 250 2.36 14.04
mcp250-3 250 250 4.51 34.09
mcp250-4 250 250 8.15 57.10
mcp500-1 500 500 0.70 2.13
mcp500-2 500 500 1.18 10.78
mcp500-3 500 500 2.08 27.94
mcp500-4 500 500 4.30 52.89

qpG11 800 1600 0.19 0.68
qpG51 1000 2000 0.35 3.36

ss30 132 294,132d 8.81 18.71

theta2 498 100 36.08 77.52
theta3 1106 150 35.27 85.40
theta4 1949 200 34.71 85.89
theta5 3028 250 34.09 89.12
theta6 4375 300 34.42 90.36
thetaG11 2401 801 1.62 4.92
thetaG51 6910 1001 4.93 53.65

(A): computer A, (B): computer B.

We can observe from the numerical results in Tables 6 and 7 that the conversion

method is advantageous when the extended sparsity patterns are less than 5%, which
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Table 6: Numerical results on SDPLIB problems for SDPA 6.00 on computer A.

standard conversion conversion-fe
problem time (s) rg fea m+ nmax time (s) rg fea m+ nmax time (s) rg fea
equalG11 455.2 1064 408,408,9 158.1 (14.3) 5 p6 1314 219,218,209 82.9 (7.7) 5
equalG51 865.1 2682 998,52,29 1234.6 (679.6) 6 1407 1000,29 900.5 (681.3)
gpp250-1 14.9 272 249,7 16.9 (1.6) 251 250 = (1.8)
gpp250-2 14.6 251 250 = (3.3) 251 250 = (3.4)
gpp250-3 13.5 251 250 = (5.0) 251 250 = (5.0)
gpp250-4 13.3 251 250 = (6.9) 251 250 = (6.9)
gpp500-1 125.5 830 493,17,13 114.0 (16.1) 5 537 499,9 124.0 (16.7) 5
gpp500-2 115.1 1207 496,30,26 132.4 (41.4) 5 501 500 = (37.2)
gpp500-3 108.4 1005 498,27,18 127.4 (56.7) 5 654 499,18 111.0 (57.1) 6
gpp500-4 99.0 501 500 = (88.7) 501 500 = (88.8)
maxG11 343.7 972 408,403,13 113.3 (10.7) 1208 216,216,208 60.8 (8.2)
maxG32 5526.4 2840 1021,1017,5 1704.3 (274.5) 2000 2000 = (358.5)
maxG51 651.8 2033 957,16,15 867.6 (84.4) 1677 971,15,15 756.8 (88.5)
mcp250-1 10.9 268 217,7,3 8.5 (0.5) 401 176,58,7 8.3 (0.5)
mcp250-2 10.6 342 233,12,5 11.9 (0.9) 327 237,12,5 11.2 (1.0)
mcp250-3 10.6 444 243,11,11 14.1 (1.9) 277 247,6,4 10.6 (2.1)
mcp250-4 10.5 305 249,11 11.3 (3.6) 305 249,11 11.6 (3.6)
mcp500-1 87.6 545 403,10,10 63.1 (3.6) 1271 324,124,10 115.2 (3.3)
mcp500-2 87.9 899 436,14,12 127.7 (6.4) 784 449,15,9 109.2 (7.3)
mcp500-3 82.4 1211 477,18,16 155.6 (17.5) 1019 482,16,13 128.2 (18.2)
mcp500-4 82.6 2013 491,20,20 246.8 (46.1) 758 498,18,15 89.5 (46.8)
qpG11 2612.5 946 419,396,5 181.6 (15.6) 1208 219,216,213 187.6 (12.3)
qpG51 5977.3 2243 947,16,15 1830.4 (88.4) 1838 965,16,15 1357.1 (99.8)
ss30 99.1 132 294,132d = (1.1) 1035 171,165,132d 67.0 (1.5) 4 p6
theta2 7.8 498 100 = (0.5) 498 100 = (0.5)
theta3 43.8 1106 150 = (2.1) 1106 150 = (2.2)
theta4 184.9 6 1949 200 = (6.2) 6 1949 200 = (6.7) 6
theta5 581.0 6 3028 250 = (15.0) 6 3028 250 = (15.7) 6
theta6 1552.9 6 4375 300 = (31.1) 6 4375 300 = (32.2) 6
thetaG11 1571.8 2743 315,280,242 852.8 (31.7) 2572 417,402 937.9 (51.1)
thetaG51 24784.7 3 p5 7210 1000,25 * (817.8) 6910 1001 = (855.9) 3 p5

is the case for “equalG11”, “maxG11”, “maxG32”, “mcp250-1”, “mcp500-1”, “qpG11”,

“qpG51”, and “thetaG11”. The exception are “maxG32” and “mcp250-1” for SDPT3

3.02. In particular, it is difficult to say which version of the conversion method is

ideal in general, but it seems that “conversion” is particularly better for “maxG32”,

and “conversion-fe” is better for “equalG11”, “maxG11”, and “qpG51”.

Once again, the converted problems under the columns “conversion-fe” are exactly the

same for the corresponding tables except “equalG11”, “maxG11”, “mcp250-4”, “mcp500-

1”, “qpG11”, and “ss30”.

For “qpG11” we have a speed-up of 6.4 to 13.2 times when preprocessed by “con-

version” or “conversion-fe” using SDPA 6.00, and 15.5 to 19.3 times for SDPT3 3.02,
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Table 7: Numerical results on SDPLIB problems for SDPA 6.00 on computer B.

standard conversion conversion-fe
problem time (s) rg fea m+ nmax time (s) rg m+ nmax time (s) rg fea
equalG11 153.5 1008 409,409,9 57.0 (8.0) 5 972 410,409 51.7 (8.5) 5
equalG51 284.3 2682 998,52,29 498.8 (762.4) 6 1407 1000,29 318.9 (763.6) 6
gpp250-1 6.4 272 249,7 6.5 (1.3) 251 250 = (1.4)
gpp250-2 6.1 251 250 = (3.2) 251 250 = (3.2)
gpp250-3 5.9 251 250 = (4.9) 251 250 = (4.9)
gpp250-4 5.7 251 250 = (7.0) 251 250 = (7.1)
gpp500-1 45.6 752 494,17,11 54.4 (14.9) 5 537 499,9 45.6 (15.2) 5
gpp500-2 42.0 801 498,26 47.7 (41.6) 6 501 500 = (39.2)
gpp500-3 39.5 1005 498,27,18 57.0 (61.8) 6 654 499,18 42.0 (62.1) 6
gpp500-4 36.1 501 500 = (98.7) 501 500 = (99.0)
maxG11 118.6 936 408,408 44.0 (6.0) 1072 408,216,208 37.6 (5.8)
maxG32 1652.1 2820 1022,1018 618.9 (150.4) 2000 2000 = (182.2)
maxG51 216.2 1868 964,16,15 432.6 (73.9) 1677 971,15,15 345.9 (75.6)
mcp250-1 4.8 268 217,7,3 4.1 (0.3) 401 176,58,7 4.4 (0.3)
mcp250-2 4.6 336 235,12,5 5.7 (0.6) 327 237,12,5 5.5 (0.6)
mcp250-3 4.7 444 243,11,11 6.8 (1.6) 277 247,6,4 4.8 (1.7)
mcp250-4 4.6 305 249,11 5.2 (3.2) 250 250 = (3.1)
mcp500-1 32.8 539 405,10,10 29.2 (1.9) 530 410,10,10 28.7 (2.2)
mcp500-2 32.9 862 439,14,12 70.7 (4.5) 784 449,15,9 56.8 (4.9)
mcp500-3 30.9 1175 478,18,16 114.0 (17.0) 1019 482,16,13 63.8 (17.3)
mcp500-4 30.9 1823 492,20,20 127.2 (50.2) 758 498,18,15 35.0 (50.5)
qpG11 810.4 946 419,396,5 103.7 (8.7) 1072 397,219,216 118.2 (9.1)
qpG51 1735.8 2180 950,16,15 1389.6 (77.2) 1838 965,16,15 904.0 (81.0)
ss30 52.9 p6 132 294,132d = (0.7) p6 132 294,132d = (0.8) p6
theta2 3.4 498 100 = (0.3) 498 100 = (0.4)
theta3 22.5 6 1106 150 = (1.5) 6 1106 150 = (1.6) 6
theta4 91.0 6 1949 200 = (4.6) 6 1949 200 = (4.9) 6
theta5 264.9 6 3028 250 = (11.6) 6 3028 250 = (11.6) 6
theta6 659.9 6 4375 300 = (24.4) 6 4375 300 = (25.1) 6
thetaG11 684.4 2743 362,330,145 508.2 (20.5) 2572 417,402 501.4 (28.9)
thetaG51 11120.2 3 p5 7210 1000,25 * (754.4) 6910 1001 = (776.0) 3 p5

even including the time for the conversion itself. On the other hand, the worse case is

“mcp250-1” (for SDPT3 3.02) which takes only 1.6 times more than “standard” when

restricting to problems with less than 5% on their extended sparsity patterns.

5.3 Structural Optimization Problems

The last set of problems are from structural optimization [12] and have sparse aggregate

sparsity patterns. Problem sizes and sparsity information are shown in Table 8.

The numerical results for these four classes of problems for SDPA 6.00 on computers

A and B are shown in Tables 9 and 10. Entries with “M” means out of memory.

Among these four classes, the conversion method is only advantageous for the “shmup”

problems.
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Table 8: Sizes and percentages of the aggregate and extended sparsity patterns of struc-
tural optimization problems.

problem m n aggregate (%) extended (%)

buck3 544 320,321,544d 3.67 7.40
buck4 1200 672,673,1200d 1.85 5.14
buck5 3280 1760,1761,3280d 0.74 2.98

shmup2 200 441,440,400d 4.03 10.26
shmup3 420 901,900,840d 2.03 6.24
shmup4 800 1681,1680,1600d 1.11 4.27
shmup5 1800 3721,3720,3600d 0.51 2.49

trto3 544 321,544d 4.22 7.50
trto4 1200 673,1200d 2.12 5.52
trto5 3280 1761,3280d 0.85 3.01

vibra3 544 320,321,544d 3.67 7.40
vibra4 1200 672,673,1200d 1.85 5.14
vibra5 3280 1760,1761,3280d 0.74 2.98

Table 9: Numerical results on structural optimization problems for SDPA 6.00 on com-
puter A.

standard conversion conversion-fe
problem time (s) rg fea m+ nmax time (s) rg fea m+ nmax time (s) rg fea
buck3 142.6 5 p6 774 314,201,131 153.8 (6.0) 4 p5 722 318,180,154 185.6 (6.9) 5 p4
buck4 1437.8 2580 400,369,297 3026.7 (34.6) 5 p5 2691 637,458,235 4004.2 (63.7) 4 p6
buck5 33373.8 5 p6 7614 608,530,459 68446.4 (430.4) 2 p4 5254 1043,976,789 33730.9 (732.7) 2 p4
shmup2 354.8 203 440,440,3 288.2 (4.4) 5 p6 709 242,242,220 192.2 (4.5) 4 p5
shmup3 2620.9 5 885 900,480,451 1544.3 (29.1) 4 885 900,480,451 1544.1 (33.5) 4
shmup4 21598.4 5 2609 882,882,840 6155.5 (174.8) 3 1706 1680,882,840 8962.2 (216.5) 3
shmup5 M 10171 1922,1861,1860 M (1874.0) 5706 1922,1922,1861 M (2359.4)
trto3 71.2 6 p6 652 183,147,7 59.3 (1.7) 5 p4 760 223,112,7 87.6 (3.2) 5 p4
trto4 762.7 5 p5 1542 392,293,12 798.4 (16.5) 4 p3 1539 405,284,12 764.5 (23.1) 4 p3
trto5 12036.5 4 p5 4111 905,498,406 13814.0 (230.0) 3 p4 4235 934,844,32 14864.7 (262.4) 3 p4
vibra3 170.7 5 p6 774 314,201,131 183.4 (6.1) 4 p5 722 318,180,154 169.1 (6.8) 4 p5
vibra4 1596.9 5 p6 2580 400,369,297 2717.5 (35.3) 4 p3 2691 637,458,235 3436.2 (63.7) 4 p4
vibra5 32946.8 5 p5 7614 608,530,459 61118.3 (430.4) 3 p4 5254 1043,976,789 29979.9 (732.6) 3 p4

We observe that both SDPA 6.00 and SDPT3 3.02 have some difficult solving the con-

verted problems, i.e., “conversion” and “conversion-fe”, to the same accuracy as “stan-

dard”, suggesting that the conversion itself can sometimes cause a negative effect. In

some cases like “vibra5” for “conversion-fe”, SDPT3 3.02 fails to solve them. However,

these structural optimization problems are difficult to solve by their nature (see “rg” and

“fea” columns under “standard”).
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Table 10: Numerical results on structural optimization problems for SDPA 6.00 on com-
puter B.

standard conversion conversion-fe
problem time (s) rg fea m+ nmax time (s) rg fea m+ nmax time (s) rg fea
buck3 76.7 5 p6 794 314,205,125 108.2 (3.5) 4 p5 686 318,317,14 95.6 (4.4) 4 p5
buck4 714.4 2286 371,346,338 2110.9 (19.9) 6 p5 2391 669,637,30 2488.2 (30.8) 5 p6
buck5 16667.3 5 p6 6692 639,609,599 46381.0 (367.7) 3 p4 5254 1043,976,789 24194.2 (383.7) 2 p5
shmup2 148.3 5 203 440,440,3 115.0 (2.5) 5 456 440,242,220 102.5 (2.8) 4
shmup3 968.1 5 420 901,900,840d = (17.4) 5 885 900,480,451 635.2 (18.0) 4
shmup4 5536.6 5 2609 882,882,840 3151.7 (97.5) 3 1706 1680,882,840 3407.9 (112.1) 3
shmup5 M 5706 1922,1922,1861 M (1156.9) 5706 1922,1922,1861 M (1237.3)
trto3 40.4 5 p6 779 313,14,12 77.0 (1.7) 3 p4 607 318,7,7 61.1 (1.7) 5 p4
trto4 424.1 5 p5 1734 401,283,12 735.6 (12.5) 4 p4 1539 405,284,12 497.9 (13.6) 3 p3
trto5 7281.3 4 p5 4117 725,588,498 9382.1 (147.6) 3 p5 4235 934,844,32 10734.3 (133.6) 3 p4
vibra3 91.2 5 p6 794 314,205,125 131.7 (3.5) 4 p5 686 318,317,14 115.2 (4.4) 4 p5
vibra4 793.4 5 p6 2286 371,346,338 2212.1 (19.5) 5 p3 2391 669,637,30 2334.1 (31.1) 4 p3
vibra5 14737.5 5 p5 6692 639,609,599 42047.7 (368.1) 2 p3 5254 1043,976,789 22015.9 (383.9) 3 p4

Once again, the converted problems under the columns “conversion-fe” have similar

sizes. In particular the converted problems are exactly the same for the corresponding

tables for “buck5”, “shmup3∼5”, “trto4∼5” and “vibra5”.

Although it is difficult to make direct comparisons due to the difference in accuracies, it

seems in general that “conversion-fe” is better than “conversion” for worse case scenarios

when preprocessing actually increases the computational cost.

In particular, SDPT3 3.02 fails to solve “buck5” and “vibra5” for “conversion” due

to lack of memory while it can solve “shmup5” using “conversion-fe”, which SDPA 6.00

cannot solve, again because of insufficient memory.

6 Conclusion and Further Remarks

As we stated in the Introduction, the conversion method is a preprocessing phase of SDP

solvers for sparse and large-scale SDPs. We slightly improved the original version [16]

here, and proposed a new version of the conversion method which attempts to produce

the best equivalent SDP in terms of reducing the computational time. A flop estimation

function was introduced to be used in the heuristic routine in the new version. Extensive
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numerical computation using SDPA 6.00 and SDPT3 3.02 was conducted comparing the

computational time for different sets of SDPs on different computers using the original

version of the conversion, “conversion”, the flop estimation version, “conversion-fe”, and

SDPs without preprocessing, “standard”. In some cases, the results were astonishing:

“norm1” became 8 to 147 times faster, and “qpG11” became 6 to 19 times faster when

compared with “standard”.

Unfortunately, it seems that each SDP prefers one of the versions of the conversion

method. However, we can say in general that both conversions are advantageous to

use when the extended sparsity pattern is less than 5%, and even in abnormal cases,

like in structural optimization problems where obtaining the feasibility is difficult, the

computational time takes at most 4 times more than solving without any conversion.

In practice, it is really worthwhile preprocessing by “conversion” or “conversion-fe”

which has the potential to reduce the computational time by a factor of 10 to 100 for sparse

SDPs. Even in those cases where solving the original problem is faster, the preprocessed

SDPs take at most twice as long to solve.

Generally, when computational time is substantially reduced, so is memory utilization

[16], although we did not present details on this.

We have a general impression that the performance of “conversion-fe” is better than

“conversion” in the worst-case scenarios, when solving the original problem is slightly

faster, for all the numerical experiments we completed. A minor remark is that “conversion-

fe” produces in general similar SDPs in terms of sizes independent of computers and solvers

which indicates that “conversion-fe” relies more on how we define the flop estimation func-

tion.

It also remains a difficult question as to whether it is possible to obtain homogeneous

matrix sizes for the converted SDPs (see columns nmax).

As proposed in the Introduction, the conversion method should be considered as a first

step to for preprocessing in SDP solvers. An immediate project is to consider incorporat-
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ing the conversion method in SDPA [25] and SDPARA [26] together with the completion

method [8, 16, 17], and to further develop theoretical and practical algorithms to exploit

sparsity and eliminate degeneracies.
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