
The Life Span Method – A New Variant of Local Search –

Mikio KUBO† and Katsuki FUJISAWA††

†Department of Information Engineering and Logistics,
Tokyo University of Mercantile Marine,
Etsujima, Koutou-ku, Tokyo 135-8533, Japan
kubo@ipc.tosho-u.ac.jp

††Department of Architecture and Architectural Systems,
Kyoto University,
Yoshida-Honmati, Sakyouku, Kyoto 606-8501, Japan
fujisawa@is-mj.archi.kyoto-u.ac.jp

Received April 25, 1996
Revised August 1, 1997

In this paper, we present a variant of local search, namely the Life Span Method (LSM),
for generic combinatorial optimization problems. The LSM can be seen as a variation of
tabu search introduced by Glover [18, 19]. We outline applications of the LSM to several
combinatorial optimization problems such as the maximum stable set problem, the traveling
salesman problem, the quadratic assignment problem, the graph partitioning problem, the
graph coloring problem, and the job-shop scheduling problem.
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1. Introduction

Among many heuristic algorithms, local search has been known as a useful tool for solving
combinatorial optimization problems. Local search is based on a simple strategy; if there
exists an improved solution near the current feasible solution, we move to the improved one,
and continue the process until no improved solution can be found. This strategy has an
analogy to the man climbing a mountain in the darkness (this is the reason local search
is sometimes termed as the hill-climbing method); he looks around him using a lantern
and if he can find a higher point, he walks to that place, and repeats this process until he
reaches to the point where no higher place cannot be found around him. If he is lucky,
he can stand the top of the mountain; but this is not always true. He sometimes stops at
a small hill, not the top of the mountain! In its very nature, all local search algorithms
own some desirable characteristics such as flexibility, speed, and ease of implementation.
But the defect of the mountain climber’s strategy also holds for local search. Our goal is
not to find a hill but to reach the top. Recently several variants of local search have been
developed to overcome this defect. These variants include the simulated annealing algorithm
[1, 7, 10, 27, 28, 30, 45], the genetic algorithm [23, 25, 35, 36], neural-net approach [26], and
tabu search [3, 18, 19, 20, 21, 22]. In this paper, we derive a new variant of local search
called the Life Span Method (LSM), which is much simpler than many other variants of local
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search.

2. Local Search and Tabu Search

In this section, we briefly review local search and tabu search on which our new algorithm
is based. Here, we deal with a general combinatorial optimization problem.

Definition 1 (Combinatorial Optimization Problem)
Let B be a finite set called the ground set. The objective of the combinatorial optimization
problem is to find a minimum cost element in the set of feasible solutions X ⊆ 2B , i.e.,

min{c(x) : x ∈ X},
where c : X → � denotes a cost mapping.

The local search is based on the adjacency relation between two feasible solutions. The
concept of adjacency is defined more precisely as follows.

Definition 2 (Neighborhood)
Given a combinatorial optimization problem, a mapping

N : X → 2X

is called the neighborhood.

Given a neighborhood N : X → 2X , a mapping improve used in local search is defined
by

improve(x) =

{
any x′ ∈ N(x) with c(x′) < c(x) if such an x′ exists
∅ otherwise.

Then a prototype of local search algorithm is described as follows.

procedure local search
1 x := some initial feasible solution
2 while improve �= ∅ do
3 x := improve(x)
4 return x

A good survey of the local improvement procedure can be found in [39] which includes
several applications.

The main idea of tabu search is to use the best neighbor instead of an improved neighbor,
and to forbid some moves to avoid cycling. Here, the move is a pair of solutions (x, x′) such
that x ∈ X and x′ ∈ N(x). The set of solutions forbidden to be used is stored in the tabu
list TL and N(x) \ TL is the set of solutions except solutions are forbidden to be used by
the tabu list TL. The tabu search algorithm uses a mapping best which can be defined by

best(x) =

{
x′ if c(x′) ≤ c(y) for all y ∈ N(x) \ TL
∅ if N(x) \ TL = ∅.

Using the above terminology, a prototype of simple tabu search can be described as
follows.
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procedure simple tabu search
1 t := 0 /∗ t represents the number of iterations ∗/
2 x0 := some initial feasible solution
3 TL := ∅ /∗ TL represents the tabu list ∗/
4 tabulength := a positive integer
5 while stopping-criterion �= yes and best(xt) �= ∅ do
6 xt+1 := best(xt)
7 TL := TL ∪ {xt} \ {xt−tabulength}
8 t := t+ 1
9 return x

Note that this prototype of tabu search is extremely simple and limited. But we do not
want to provide fuller characterizations of the method because we want to focus on a simple
subset of tabu search. Our goal of this paper is to offer a way to re-express the basic content of
this subset of ideas to make them convenient to apply. In the original implementation of tabu
search, a queue with a finite length tabulength is merely one of the types of memory designs
proposed. The element in the tabu list stored in the tabulength iteration is overwritten by
a new attribute, i.e., the solution in the t-th iteration is stored in TL(t mod tabulength). In
some applications, it is very time-consuming to store the solutions themselves in the tabu
list; so Glover recommended the following approximation.

The attribute is a ’coding’ or ’finger-print’ of a pair (x, x′) of solutions. More precisely, we
assume that there exists a mapping ψ : X ×X →A, where A denotes the set of attributes.
When a solution x is moved to the new one x′ ∈ N(x), we store attribute ψ(x′, x) in the
tabu list. Then, if attribute ψ(x, x ′) is in the tabu list, move (x, x ′) cannot be used, i.e., the
move is ’tabu’, for tabulength iterations. Some heuristics to diversify and to intensify the
search were proposed. For more details, see [18, 19, 21, 22].

3. Life Span Method

In this section, we describe a new variant of local search named the Life Span Method (LSM).

3.1. Origin

Before describing our algorithm, we mention the origin of the LSM. Our first aim was to
compare some variants of local search in a fair manner. When we started the comparison,
many ’modern’ variants of local search had been presented by many researchers; but little
attention had been paid to ’fair’ comparisons of the algorithms. We had already known
that some classical local search algorithms work very well; but we knew little about the
newly developed algorithms such as the simulated annealing, genetic, neural net, and tabu
search algorithms. For the former algorithm, Johnson et al. [27, 28] did extensive numerical
experiments and concluded that the simulated annealing algorithm is not a panacea, but a
neat tool which works well on some combinatorial optimization problems if we are allowed
to use a large amount of computational requirements.

We first decided to do extensive experiments on tabu search, and did a series of numerical
experiments on some combinatorial optimization problems. At first, we selected two graph
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theoretical combinatorial optimization problems, the graph partitioning and graph coloring
problems, as a test bed because we could use the same instances used in the extensive
experiments due to Johnson et al. [27, 28] in which they compared some classical algorithms
with the simulated annealing algorithms.

Our original implementation of tabu search was competitive with the simulated annealing
algorithm, but did not significantly outperform the simulated annealing nor other competi-
tives. To make tabu search work much more efficient, we needed some modifications of the
original tabu search.

Firstly we observed that the definition of ’attributes’ is a crucial factor for a good imple-
mentation of tabu search, but we could find little guideline to determine the ’good’ attribute
in the literature; the definitions of attributes are problem dependent, and ad hoc techniques
were used to select probably good attributes. So we decided to use more simple and definite
rule to define the attribute, which will be explained more precisely later.

The original tabu search began by sketching general ideas and this descriptions were not
widely understood. But recent works [20, 21] have undertaken to clarify and extend the basic
principles. Many additional features to intensify and to diversify the search are proposed and
added into the original tabu search algorithm. Simultaneously, many additional parameters
are required. Of course, we could obtain an algorithm which works faster and gives better
solutions by incorporating many additional ad hoc rules; but inserting many features makes
the comparison rather vague. So we decided to make the algorithm as simple as possible.

We had revised and tailored the tabu search algorithm in various ways to a number of
different problems, and each time learned something we felt was useful. Finally we obtained
a version that we found to be quite effective, and that we believed to contain aspects that
were not an explicit part of customary tabu search implementations. We developed a math-
ematical formulation in terms of symmetric differences that has proved for us to be highly
convenient, and that has led us to develop our refinements more readily. This has also led us
to adopt a philosophy that differs from the philosophy of many tabu search implementations,
which are based on collecting principles of intelligent problem solving [21], and which can
sometimes require the use of many control parameters. Meanwhile, our philosophy is to keep
the number of control parameters as small as possible. We felt that the final version was not
tabu search any more; so we choose to call the “life span method” and to clarify these ideas
with the goal of allowing them to be implemented more routinely and conveniently.

3.2. Outline of the life span method

Now, we present the LSM in a general form. Note that the LSM is a convenient and useful
variant of the original tabu search. We can see the similar type of organizing memory in
recent works. The LSM works on 2B instead of X, whereB is the ground set. So the solutions
which are not in the feasible solution set X are allowed to be searched. Although some tabu
search and simulated annealing algorithms in the literature have adopted such infeasible
solution approach, the LSM treats the infeasibility of solutions in an explicit manner.

The definition of the attribute in the original tabu search was rather vague and problem
dependent. In the LSM, the set of attributes A corresponds to 2B . Recall that X ⊆ 2B ; so
given two solutions x, x′ ∈ 2B , the symmetric difference x
x ′ = (x′ \ x) ∪ (x \ x′) is also
in 2B. Thus, the ’attribute’ mapping ψ is simply stated as ψ(x, x ′) = x
x′ in the LSM.
For each element β of B, we define ’Life Span’ of β as the remaining iterations that β is
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forbidden to be used, and denote it by LS(β). When a solution x is moved to a new one
x′ ∈ N(x), we set LS(β) to a positive integer tabulength for β ∈ x
x ′. For every iteration,
we decrease LS(β) by 1 if LS(β) > 0. If LS(β) is positive, all moves (x, x ′) whose symmetric
differences include β are forbidden. We can say that symmetric difference is a convenient way
to summarize the identity of attributes (variables) that change in moving between solutions.
Glover emphasized this identification in [21]. The early tabu search literature suggests the
merit of asymmetric tabu tenures, applied to solution elements that change from iteration
to iteration (hence applied to the members of our symmetric difference set). However, we
focus on using completely symmetric tabu tenures, which causes a given element to remain
tabu for the same length of time regardless of whether it is removed from or added to a
previous solution (to create the current solution). By treating all elements of the symmetric
difference set in this way, we simplify the range of options to consider. Note that we may
use a simple attribute mapping ψ(x, x′) = x′ \ x instead of ψ(x, x′) = x
x′. This can be
seen as a special case of the original definition of the LSM. Alternately, it is a special case of
using asymmetric tabu tenures. When a solution x is moved to a new one x′ ∈ N(x), we set
LS(β) to tabulength for β ∈ (x′ \ x) and to 0 for β ∈ (x \ x′). Note that our organization
of memory relative to the ground state is equivalent to an implicit zero-one representation
of attributes and this is common in many applications of tabu search. Nevertheless, our
particular way of defining tabu status corresponds to a different choice than often occurs
in the literature. That is, in the terminology of [21], we define tabu status in terms of the
’to’ attributes of a move (those that belong to the new solution) rather than in terms of the
’from’ attributes (those that belong to the original solution). When only one of these sets
of elements is considered, in many cases researchers have focused on defining tabu status
relative to the ’from’ set rather than the ’to’ set, in contrast to our approach. We apply
this simple variant of the LSM to the maximum stable set problems, the traveling salesman,
quadratic assignment, job-shop scheduling problems in Sections 4, 5, and 9, respectively.

As in tabu search, we move to the best neighbor which is not forbidden to be used. Since
we are allowed to visit infeasible solutions in the course of the algorithm, the neighborhood
mapping N is defined as

N : X̃ → 2X̃

where X̃ = 2B is the set of (feasible or infeasible) solutions and the mapping best in the
tabu search is modified as

best(x) = arg min{c(y) : y ∈ N(x) such that LS(β) = 0 for all β ∈ x
y}.

Now a prototype of the LSM is described as follows.

procedure life span method (LSM)
1 x := some initial solution
2 LS(β) := 0 for all β ∈ B
3 tabulength := a positive integer
4 while stopping-criterion �= yes and best(x) �= ∅ do
5 x′ := best(x)
6 LS(β) := tabulength for all β ∈ x
x ′

7 x := x′
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8 LS(β) := LS(β)− 1 for all β ∈ B such that LS(β) > 0
9 return x

Usually, we can execute the operation in line 8 in the course of finding the best neighbor
in line 5; so the time complexity of the above algorithm depends on finding the best move
(line 5). If |B| is too large, we may store the number of the iteration in LS(β) in line 6
and omit the operation in line 8. Then, if the current iteration number is less than LS(β)+
tabulength, all moves which use β are forbidden. Note that a similar technique was used in
some special applications such as the permutation problem [21], the quadratic assignment
problem [41], and the job shop scheduling problem [42].

We then summarize the merits of the LSM. Firstly, we can determine the attributes
without any ambiguity. Further checking the tabu status can be done in O(1) time in
the LSM, while the queue implementation of tabu search requires O(tabulength) time to
do the same operation. Instead, the LSM requires an additional O(|B|) memory, but it
can be negligible in almost all applications. We can easily incorporate ’randomness’ into
the algorithm by randomizing the parameter, tabulength. Further, allowing the infeasible
solutions makes it possible to search much deeper neighborhood. To ensure the final solution
to be feasible, some techniques are needed. Examples are the penalty function approach, the
fixed cardinality approach, and the pseudo-feasible search, which will be discussed below.
Of course, we can add any feature used in tabu search such as the long-term memory and
the target analysis to diversify the search into the LSM.

3.3. How to keep feasibility

One characteristic of the LSM is to allow an infeasible solution temporally. In order to keep
the feasibility, we need some mechanism to force the solutions to return to the feasible area.
We outline three techniques, the penalty function approach, the fixed-cardinality approach,
and the pseudo-feasible solution approach. These approaches are not new; they have been
used in some local search techniques. But we feel that it is of use to summarize these
approaches in an explicit manner here. We also summarize the merits and the defects of
these three approaches.

We turn to the analogy again. Finding the best feasible solution using neighborhood
structures is similar to the man finding the goal in the maze. Feasible regions of combinatorial
optimization problems correspond to roads in the maze. Searching the goal in the maze is
too difficult if the man walks on the roads in the maze (this corresponds to the ’usual’ feasible
solution approach). Sometimes there may not a path from the position where he stands to
the goal. The infeasible solution approach corresponds to the man who has wings. He can
fly and get over the walls in the maze. He has more freedom than the man on the ground.

3.3.1. Penalty function approach

For penalty function approaches, we represent the infeasibility by the gap between the set
of feasible solutions X and an infeasible solution x. Such a gap is usually defined as the
distance function d(x,X) between x and X, Of course, we may use any metric function to
represent a gap between x and X. We then define the penalty function p(x) as follows:

p(x) = c(x) + α · d(x,X), (1)
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where α is a scalar parameter. The parameter α is determined so that it satisfies the following
condition:

c(y)− c(x)
d(x,X)

< α for all y ∈ X,x ∈ 2B \X.

Otherwise, an infeasible solution may be an optimal solution with respect to the modified
cost function defined in (1). Note that simulated annealing algorithms to the graph coloring
problem using the penalty function approach [1, 28] do not satisfy the above condition, but
it works well because the algorithm searches locally optimal solutions which are very good
in terms of the original cost function.

By adding penalty terms, the algorithm based on neighborhood structures can escape
from locally optimal solutions. Meanwhile, it is sometimes difficult to set parameter α
appropriately and to select a good penalty function.

3.3.2. Fixed cardinality approach

In some applications, we can guess the objective function value and the aim is to find a
solution which attains such an objective function value. In such cases, we fix the objective
function value temporally, and decrease the infeasibility until the solution becomes feasible.
We call this approach the fixed cardinality approach.

For example, consider the ’standard’ graph coloring problem (we will discuss a ’fixed
cardinality’ variant in Section 8): given a graph, find a minimum number of colors so that
the color on the pair of vertices incident to any edge is different. For random graphs, we can
easily guess the minimum number of colors needed to color the graph. We fix the number of
colors temporally, and then solve the (fixed cardinality) problem to minimize the number of
edges whose both end vertices have the same color. If a solution with ’zero’ value is found,
we get an approximate solution to the original graph coloring problem.

If the optimal objective function value is not known a priori, we can apply the fixed
cardinality approach with a binary search technique. If we know that the (integer) optimal
value is in the range [L,U ], we can obtain the optimal solution in log(U − L) time.

The fixed cardinality approach is useful when we can estimate the optimal value a priori.
Meanwhile, it takes much computational time when the estimation is poor.

3.3.3. Pseudo-feasible solution approach

Let X̃ ⊆ 2B be the set of pseudo-feasible solutions which is, in a sense, ’near’ to the set X of
feasible solutions. We search good solutions on X̃ instead of X or 2B . The precise meaning
of the nearness depends on the neighborhood structure. Usually, we use two neighborhoods;
one is to escape from the feasible region and the other is to return to the feasible region.
A pseudo-feasible solution is an infeasible solution which can be reached from a feasible
solution using only one ’escaping’ neighborhood.

Note that the similar mechanism has been incorporated in the classical local search
algorithms. Two famous classical approaches, Kernighan and Lin’s algorithm for the graph
partitioning problem [29] and Lin and Kernighan-opt for the traveling salesman problem
[33], used the depth-first local search in which the concept of ’pseudo-feasible solution’ was
used in an implicit manner.
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3.4. Overview of Applications

In the following sections, we illustrate the LSM using several combinatorial optimization
problems all of which are known to be NP-hard. In Section 4, we consider a simple graph
theoretic combinatorial optimization problem, the maximum stable set problem, to illustrate
the application of the LSM. In Sections 5 and 6, we apply the LSM to two famous combina-
torial optimization problems, the traveling salesman problem and the quadratic assignment
problem, both of which seek to a good permutation of n elements. In Sections 7 and 8, we
describe applications of the LSM to two graph theoretic combinatorial optimization prob-
lems, the graph partitioning and coloring problems, which were used in our first numerical
comparisons. Finally, we illustrate a nonstandard application of the LSM to a more com-
plicated combinatorial optimization problem, the job shop scheduling problem in Section
9.

4. Application to Stable Set Problem

The problems that we will consider in this section are described as follows.

Definition 3 (Maximum Stable Set Problem: MSSP)
Let G = (V,E) be an undirected graph, where V is the set of vertices and E is the set of

edges. A stable set of G is a subset of V such that no two vertices of the subset are pairwise
adjacent. The Maximum Stable Set Problem (MSSP) is to find a stable set of maximum
cardinality in G.

Definition 4 (Maximum Clique Problem)
Let G = (V,E) be an undirected graph, where V is the set of vertices and E is the set

of edges. A clique is a subset of V such that all the vertices are pairwise adjacent. The
maximum clique problem is to find a clique of maximum cardinality in G.

Definition 5 (Minimum Vertex Cover Problem)
Let G = (V,E) be an undirected graph, where V is the set of vertices and E is the set of

edges. A vertex cover S is a subset of V such that every edge (i, j) ∈ E is incident to at least
one vertex in S. The minimum vertex cover problem is to find a vertex cover of minimum
cardinality in G.

These problems have applications in a wide variety of fields such as project selection,
classification theory, fault tolerance, coding theory, computer vision, economics, information
retrieval, signal transmission theory, aligning DNA and protein sequences, etc. (see [40]).

The complement of G = (V,E) is a graph Ḡ = (V, Ē) such that (i, j) ∈ Ē if and only if
(i, j) �∈ E. It is easily seen that S is a stable set of G if and only if S is a clique of Ḡ and
V \ S is a vertex cover of G; thus the maximum clique problem, the vertex cover problem
and the maximum stable set problem are equivalent.

In this section, we describe the LSM for solving the MSSP [14]. Note that we can
easily construct an algorithm for the maximum clique problem, the minimum cover problem,
and a weighted version of these problems based on the algorithm presented below. An
implementation of tabu search for the MSSP was presented by Friden et al. [11] and by
Gendreau et al. [17], but our implementation based on the LSM is much simpler.
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Before describing the details, we reformulate the MSSP as a general combinatorial op-
timization problem. For the MSSP, the ground set B is the vertex set V . Given a set of
vertices S ⊆ V , let us denote by E(S) the set of edges whose endpoints are both in S. Then
the set X of feasible solutions is defined by

X = {S ⊆ V : |E(S)| = 0}.

Since we want to maximize the cardinality of the stable set S, the cost mapping c is defined
by

c(S) = −|S|.
To design an efficient LSM tailored to the MSSP, we must determine several features of

the algorithm very carefully. The main features are:

1. definition of the search space (fixed cardinality approach or penalty function approach
or pseudo-feasible search);

2. selection of the neighborhood;

3. selection of life span;

4. how to compute the change in costs.

We will describe the details below.
We adopted the ’pseudo-feasible’ solution approach instead of using the fixed-k or penalty

function approach. We use a ’move’ neighborhood which consists of ’add’ and ’drop’ phases.
Given a vertex set S(⊆ V ), the add and drop neighborhoods are defined by

Nadd(S) = {S ∪ {i} : i ∈ V \ S} (2)

and

Ndrop(S) = {S \ {i} : i ∈ S}, (3)

respectively.
If |E(S)| = 0, we use the add operation; otherwise, we use the drop operation.
For the add neighbor Nadd, the symmetric difference x
x ′ of two solutions x and x′ such

that x′ ∈ Nadd(x) is the added vertex i in (2). Similarly, for the drop neighbor Ndrop, the
symmetric difference is the dropped vertex i in (3). Associated with each vertex i ∈ V , we
keep the life span LS(i) in which we store the remaining iterations that vertex i is forbidden
to be used. If LS(i) = 0, vertex i can be added or dropped.

To design a fast algorithm, we must compute the change in costs efficiently. This can
be achieved by introducing an auxiliary array δ. For each i ∈ V , δ(i) keeps the number of
vertices j ∈ S adjacent to i. The array δ can be updated in O(|V |) time using the algorithm
presented below.

Now, we can describe the outline of the life span method for the MSSP.
The computational requirement of the algorithm above is O(|V |) per iteration.
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procedure LSM for MSSP
1 S = ∅
2 δ(i) = 0 for all i ∈ V
3 z := 0 /∗ z keeps |E(S)| ∗/
4 LS(i) := 0 for all i ∈ V
5 while terminate-criterion �= yes do
6 if z = 0 then /∗ add phase ∗/
7 i∗ := arg min{δ(i) : i ∈ V \ S,LS(i) = 0}
8 S := S ∪ {i∗}
9 LS(i∗) := tabulength

10 for all j adjacent to i∗

11 δ(j) := δ(j) + 1
12 if j ∈ S then z := z + 1
13 else /∗ drop phase ∗/
14 i∗ := arg max{δ(i) : i ∈ S,LS(i) = 0}
15 S := S \ {i∗}
16 LS(i∗) := tabulength
17 for all j adjacent to i∗

18 δ(j) := δ(j)− 1
19 if j ∈ S then z := z − 1
20 for all i ∈ V
21 if LS(i) > 0 then LS(i) := LS(i)− 1
22 return S

5. Application to Traveling Salesman Problem

Next, we illustrate the LSM using the most famous combinatorial optimization problem, the
traveling salesman problem.

Definition 6 (Traveling Salesman Problem: TSP)
Given a set V = {1, · · · , n} and an n × n symmetric matrix D = (dij), find a cyclic

permutation ρ : V → {1 · · · , n} which minimizes the cost function

c(ρ) =
n−1∑
i=1

dρ(i)ρ(i+1) + dρ(n)ρ(1).

This problem has the following interpretation. A salesman wants to visit n cities, and the
distance dij is the inter-travel distance between cities i and j. The i-th element of the cyclic
permutation ρ represents the i-th visiting city of the salesman; the cost c(ρ) is the total
travel distance of the salesman. The objective of the TSP is to find a tour of the salesman
which minimizes the total travel distance.
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Using 0-1 variable xij which is set to 1 if the salesman visits city j immediately after city
i, the TSP is stated as the following integer programming problem:

min
∑

i

∑
j

cijxij

subject to

∑
j

xij = 1 i ∈ V,

∑
j

xji = 1 i ∈ V,

∑
i∈S

∑
j∈S

xij ≤| S | −1 S ⊂ V, S �= ∅,

xij ∈ {0, 1} (i, j) ∈ E.
For the TSP, the ground set B corresponds to the edge set E. A feasible solution x ∈ X

for the TSP corresponds to a tour or a cyclic permutation. We denote the set of all cyclic
permutations by P and denote the edge set of the tour associated with a cyclic permutation
ρ by T (ρ). We say two tours are k-opt neighbors if one can be obtained from the other by
deleting k edges and by adding k edges. The most famous local search algorithms are 2-opt
and 3-opt procedures introduced by Lin [32]. We define these two neighborhood structures
more precisely.

Definition 7 (2-opt neighborhood for TSP )
The 2-opt neighborhood is

N2(ρ) = {ρ′ ∈ P : T (ρ′) = T (ρ) \ {e1, e2} ∪ {e3, e4}
for all e1, e2 ∈ T (ρ), e3, e4 �∈ T (ρ)}. (4)

Definition 8 (3-opt neighborhood for TSP )
The 3-opt neighborhood is

N3(ρ) = {ρ′ ∈ P : T (ρ′) = T (ρ) \ {e1, e2, e3} ∪ {e4, e5, e6}
for all e1, e2, e3 ∈ T (ρ), e4, e5, e6 �∈ T (ρ)}. (5)

A more sophisticated neighborhood is presented by Lin and Kernighan [33]. The Lin and
Kernighan-opt neighborhood informally defined as

NLK(ρ) = {ρ′ ∈ P : T (ρ′) is obtained from T (ρ)

by successive deletion and addition of edges }.
The precise definition of the Lin and Kernighan-opt neighborhood is too complicated to be
described here in detail. We refer the readers to [33].
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We can easily see that the symmetric difference of two feasible solutions, which are
neighbors each other in terms of the above neighborhoods, is the set of deleted and added
edges. Notice that the ground set of the TSP is the set E of edges, and that we define the
life span LS(e) for each edge e ∈ E. We set LS(e) to a positive number when edge e is
deleted from the current tour. If LS(e) is positive, edge e is forbidden to be added again.

In tabu search algorithms, the definitions of attributes were rather vague. Malek et al.
[34] proposed a tabu search algorithm for the TSP based on the 2-opt neighborhood in which
9 types of attributes are used. Glover [18] suggested a tabu search algorithm in which the
attribute is a pair of edges for the 2-opt neighborhood and a triple of edges for the 3-opt
neighborhood. The life span LS can be seen as a projection of the attribute space onto the
edge space. Based on the LSM, we can easily construct an algorithm based on the Lin and
Kernighan-opt neighborhood.

Using a neighborhood mapping N , which corresponds to Nk for k = 2 or 3 or NLK , we
can obtain the LSM for the TSP.

procedure LSM for TSP
1 select ρ(∈ P ) arbitrary
2 LS(e) := 0 for all e ∈ E
3 while terminate-criterion �= yes do
4 ρ∗ := arg min{c(ρ′) : ρ′ ∈ N(ρ), LS(e) = 0 for all e ∈ T (ρ′) \ T (ρ)}
5 LS(e) := tabulength for all e ∈ T (ρ) \ T (ρ∗)
6 ρ := ρ∗

7 for all i ∈ E
8 if LS(e) > 0 then LS(e) := LS(e)− 1
9 return ρ

In line 4 of the above algorithm, T (ρ′)\T (ρ) represents the set of added edges; for the 2-
opt neighborhood, it represents {e3, e4} in (4), while for the 3-opt neighborhood, it represent
{e4, e5, e6} in (5). Similarly, in line 5, T (ρ) \ T (ρ∗) represents the set of deleted edges.

6. Application to Quadratic Assignment Problem

In this section, we apply the LSM to one of the most infamous combinatorial optimization
problem, the quadratic assignment problem.

Definition 9 (Quadratic Assignment Problem: QAP)
Given a set V = {1, · · · , n} and n× n symmetric matrices F = (f ij) and D = (dk�), find a

permutation π : V → {1 · · · , n} which minimizes the cost function

c(π) =
∑

i

∑
j

fijdπ(i)π(j).

This problem has the following interpretation. A permutation π is the assignment of n
objects (facilities) to n locations. The value fij is the flow between objects i and j, and dk�
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is the distance between locations k and �. When object i is assigned to location k and object
j is assigned to location �, the cumulative distance fijdk� is incurred. The objective of the
QAP is to find an assignment which minimizes the cumulative distances between all pairs of
objects.

The applications of the QAP include the location of machines, ordering of data on a
disk, the location of departments (or offices), etc. The QAP is known to be one of the most
intractable problems in NP-hard problems because there are many local optimal solutions
that are very near to the global optima.

Using the 0-1 variable xij which is set to 1 if the object i is assigned to the location j,
the QAP is stated as the following integer programming problem:

min
∑

i

∑
j

∑
k

∑
�

fijdk�xikxj�

subject to

∑
j

xij = 1 i ∈ V,

∑
j

xji = 1 i ∈ V,

xij ∈ {0, 1} i ∈ V, j ∈ V.
The ground set B of the QAP is V × V . The set X of feasible solutions is the set of

permutation matrices which is a subset of 2B, i.e., X ⊆ 2V ×V . We denote the set of all
permutations by Π.

Definition 10 (2-opt neighborhood for QAP)
Given a permutation π, a 2-opt neighbor N is defined by

N2(π) = {π ′ ∈ Π : π ′(i) = π(j), π ′(j) = π(i), π ′(k) = π(k)(k �= i, j) for some i, j ∈ V, i �= j}.

Definition 11 (3-opt neighborhood for QAP)
Given a permutation π, a 3-opt neighbor N is defined by

N3(π) = {π ′ ∈ Π : π ′(i) = π(j), π ′(j) = π(k), π′(k) = π(i), π ′(�) = π(�)

(� �= i, j, k) for some i, j, k ∈ V, i �= j �= k}.

The life span LS is defined on the ground set B = V ×V . The symmetric difference of two
permutations is a set of pairs of object i and location k. For each pair (i, k) ∈ V ×V , we keep
the life span LS(i, k), which is set to a positive value when object i is moved from location
k. In the following tabulength iterations, object i is forbidden to return to location k again.
We can use the same mechanism for the 3-opt neighborhood. We denote the permutation
matrix (n × n square 0-1 matrix whose row and column sums are all 1) associated with
permutation π by Mπ. Given two permutations π and π′, we define a set M(π \ π ′) as
follows: (i, j) ∈ M(π \π ′) if and only if Mπ(i, j) = 1 and Mπ′(i, j) = 0. When we move from
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π to π′, we set LS(i, k) to a positive integer, tabulength, for all (i, k) ∈ M(π \ π ′). The life
span LS is diminished by 1 for each iteration, and object i is forbidden to move to location
k if LS(i, k) is positive.

To implement an efficient local search algorithm, we must compute the difference c(π ′)−
c(π) in costs of two permutations π and π′.

We first consider the 2-opt neighborhood. The difference ∆ij when we swap two objects
i and j can be computed as follows:

∆ij =
∑
k

(fjk − fik)(dπ(i)π(k) − dπ(j)π(k)).

We select the best move which minimizes ∆ ij such that LS(i, π(j)) = 0 and LS(j, π(i)) = 0.
A straightforward implementation takes O(n3) time per iteration. If we choose the best

one among O(n2) candidate pairs, the average (amortized) computational requirements can
be reduced to O(1) per pair. This can be done using the additional O(n2) memory require-
ments. We first rewrite the ∆ij as follows:

∆ij =
∑
k

(fjk − fik)(dπ(i)π(k) − dπ(j)π(k))

=
∑
k

(fjkdπ(i)π(k) − fjkdπ(j)π(k) + fikdπ(j)π(k) − fikdπ(i)π(k)).

If we store the value δip =
∑

k fikdpπ(k) for every i and p which represents the difference in
cost when object i is moved to the location p, ∆ij can be computed in O(1) time as follows:

∆ij = δjπ(i) − δjπ(j) + δiπ(j) − δiπ(i) + 2fijdπ(i)π(j). (6)

Initially, we calculate all δ’s in O(n3) time. If two objects a and b swap their positions, the
value δip is recomputed as follows:

δip := δip + (fib − fia)(dπ(i)π(a) − dπ(i)π(b)).

Since each updating can be done in O(1) time, and the number of updates is O(n2), we can
update the array δ in O(n2) time. Finding the minimum of ∆ ij can be done in O(n2) time; so
one iteration of the LSM is O(n2), which is an O(n) refinement of the naive implementation.

Similarly, we can compute the difference ∆ ijh in costs when we exchange three objects
i, j, h as follows:

∆ijh = δiπ(j) − δiπ(i) + δjπ(h) − δjπ(j) + δhπ(i) − δhπ(h)

+fih(dπ(j)π(i) − dπ(j)π(h))

+fji(dπ(h)π(j) − dπ(h)π(i))

+fhj(dπ(i)π(h) − dπ(i)π(j))

+fijdπ(i)π(j) + fjhdπ(j)π(h) + fihdπ(i)π(h). (7)

If three objects a, b, and c exchange their positions, the value δ ip is recomputed as follows:

δip := δip + (fib − fic)(dπ(i)π(c) − dπ(i)π(b)) + (fic − fia)(dπ(i)π(a) − dπ(i)π(b)).

Thus, we can find the best move in the 3-opt neighborhood in O(n3) time.
Using the neighborhood mapping N , which is 2 and/or 3-opt neighborhoods, we describe

the LSM for the QAP.
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procedure life span method for QAP.
1 select π(∈ Π) arbitrary
2 LS(i, j) := 0 for all (i, j) ∈ V × V
3 while terminate-criterion �= yes do
4 while change23-criterion �= yes do /* 2-opt phase */
5 π∗ := arg min{c(π ′) : π′ ∈ N2(π), LS(i, k) = 0 for all (i, k) ∈ M(π ′ \ π)}
6 LS(i, k) := tabulength for all (i, k) ∈ M(π \ π ∗)
7 π := π∗

8 for all (i, j) ∈ V × V
9 if LS(i, j) > 0 then LS(i, j) := LS(i, j)− 1

10 while change32-criterion �= yes do /* 2 and 3-opt phase */
11 π∗ := arg min{c(π ′) : π′ ∈ N3(π) ∪ N2(π), LS(i, k) = 0 for all (i, k) ∈ M(π ′ \ π)}
12 LS(i, k) := tabulength for all (i, k) ∈ M(π \ π ∗)
13 π := π∗

14 for all (i, j) ∈ V × V
15 if LS(i, j) > 0 then LS(i, j) := LS(i, j)− 1
16 return π

7. Application to Graph Partitioning Problem

In this section we focus on the graph partitioning problem which has applications in circuit
board wiring and program segmentation.

Definition 12 (Graph Partitioning Problem: GPP)
We are given an undirected graph G = (V,E) with the set of vertices V and the set of edges
E. Associated with an edge (i, j) ∈ E, there exists a nonnegative weight cij called the cost
of (i, j). Assume that |V | is even and let n = |V |. A partition of V is a pair (L,R) of vertex
sets such that L ∩R = ∅ and L ∪R = V . Sets L and R are called left and right vertex sets,
respectively. A partition (L,R) of V is called uniform when |L| = |R| = n/2. The objective
is to find a uniform partition (L,R) of V which minimizes c(L,R) =

∑
i∈L,j∈R cij .

We restrict our attention to the case cij = 0, 1, i.e., we set cij = 1 if and only if (i, j) ∈ E.
Notice that the problem under this restriction remains NP-hard [16].

We apply the pseudo-feasible solution approach. We use the following neighborhood
structure. Given a partition (L,R), which is not necessary uniform, the left-to-right neigh-

borhood
−→
N and the right-to-left neighborhood

←−
N are defined by

−→
N ((L,R)) = {(L′, R′) : L′ = L \ {�}, R′ = R ∪ {�} for all � ∈ L} ,

and

←−
N ((L,R)) = {(L′, R′) : L′ = L ∪ {r}, R′ = R \ {r} for all r ∈ R} ,

respectively.
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procedure LSM for GPP
1 (L,R) := some uniform partition
2 LS(i) := 0 for all i ∈ V
3 c∗ :=

∑
i∈L,j∈R cij

4 compute S(i) and D(i)
5 while stopping-criterion �= yes do
6 �∗ := arg min{δ(�) : � ∈ L,LS(�) = 0} /* left-to-right movement */
7 LS(�∗) := tabulength
8 update S and D
9 r∗ := arg min{δ(r) : r ∈ R,LS(r) = 0} /* right-to-left movement */

10 LS(r∗) := tabulength
11 update S and D
12 (L,R) := (L \ {�} ∪ {r}, R \ {r} ∪ {�})
13 for all i ∈ V
14 if LS(i) > 0 then LS(i) := LS(i)− 1
15 return (L,R)

The symmetric difference of two solutions is the vertex moved to a different set. Since
the ground set B of the GPP is the set V of vertices, we keep LS(i) for each vertex i ∈ V
in which the remaining iterations that vertex i is forbidden to be moved. We set LS(i) to
a positive value when vertex i is moved to another set, and decrease LS(i) by 1 for each
iteration.

We compute the reduction (or gain) of the cost c(L′, R′) − c(L,R) using two auxiliary
arrays S and D. The arrays S and D are n-dimensional arrays. The i-th element of S (or
D) keeps the number of edges incident to vertex i whose endpoints are both in the same set
(or the different sets) of a partition. The reduction of the cost δ(i) by moving vertex i from
one set to another may be computed as

δ(i) = S(i)−D(i). (8)

Initially the arrays S and D are computed in O(n2) time. When we move vertex � from
L to R, we change the arrays S(i) and D(i) for every vertex i incident to � as follows:
S(i) := S(i) − 1,D(i) := D(i) + 1 for all i ∈ L \ {�} incident to vertex �, and S(i) :=
S(i) + 1,D(i) := D(i) − 1 for all i ∈ R. This takes only O(n) time. For the reverse
movement, we can update the arrays S and D in a similar manner in O(n) time. Thus, one
iteration of the movement can be done in O(n) time.

Using the above strategies as ingredients, we can describe the LSM for the GPP in a
simple form. Although we also use the two-move neighbor (we move two vertices from L to
R and then return two other vertices from R to L) to accelerate the search in our real code,
here we omit the details for simplicity of the description.
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8. Application to Graph Coloring Problem

Here we describe a nonstandard application of the LSM to the Graph Coloring Problem
(GCP). The GCP has applications to time tabling or scheduling, tool allocation in FMS,
frequency assignment, register allocation, and printed circuit board testing.

Definition 13 (Graph Coloring Problem: GCP )
We are given a fixed positive number k and an undirected graph G = (V,E). We want to

find a partition of V into k color classes C1, · · · , Ck which minimizes the total number of
edges which do not have endpoints in different color classes.

For the GCP, the ground set B corresponds to the set V of vertices. In this case, a
feasible solution is not a subset of B(= V ), but an assignment of k colors to the vertex set
V , i.e., the set X of feasible solutions is a subset of KB, where K = {1, · · · , k}. The cost
mapping c is defined as the total number of bad edges, where a bad edge is an edge whose
both end vertices have the same color. Let baddegree(i) be the number of bad edges incident
to vertex i. we restrict the neighborhood moving vertices which have positive baddegree.

Now, we are given a partition Υ = {V1, · · · , Vk} of V into k color classes. We denote by
color(i) the index of color class to which vertex i is assigned, i.e., � = color(i) if and only if
i ∈ V�. The neighborhood N of Υ = {V1, · · · , Vk} for the GCP is defined by

N(Υ) = {Υ′ = {V ′
1 , · · · , V ′

k} : V ′
color(i) = Vcolor(i) \ {i}, V ′

� = V� ∪ {i}
for all � �= color(i) and i ∈ V such that baddegree(i) > 0}.

We select the best neighbor as follows. We first compute the number C(i, �) of bad
edges incident to vertex i when i is assigned to the color class � �= color(i). In order to
compute C(i, �) efficiently, we must carefully choose the data structure. The underlying
graph G = (V,E) is represented by an adjacency list consisting of an array of |V | lists and
pointers to all adjacent vertices. We use a table T with length k. For each vertex i which
has a positive baddegree, we execute the following procedure.

subroutine computation of C(i, �)
1 T (�) := 0 for all � = 1, · · · , k
2 for all j adjacent to vertex i
3 T (color(j)) := T (color(j)) + 1
4 return T

The above subroutine returns an array T whose �-th element corresponds to C(i, �).
Thus, we can compute all C(i, �)’s in O(n2) time. Let k∗(i) �= color(i) be the color class
which attains the minimum of C(i, �) over all � ∈ K \ {color(i)}. We select the best vertex
among the candidates as follows:

i∗ = arg min{C(i, k∗(i)) : i ∈ V,LS(i) = 0, baddegree(i) > 0}.
Then we set the color class of vertex i to k∗(i) and set baddegree(i∗) to k∗(i∗); this can be
done in O(1) time.

Associated with each vertex i ∈ V , we define the life span LS(i). We set LS(i) to a
positive integer, tabulength, when the color of vertex i is changed. The life span of vertex
i is the remaining number of iterations that vertex i is forbidden to be used as a candidate
vertex.
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procedure LSM for GCP
1 color(i) := a random integer from {1, · · · , k} for all i ∈ V
2 LS(i) := 0 for all i ∈ V
3 compute baddegree(i) for all i ∈ V
4 while stopping-criterion �= yes do
5 Θ := {i ∈ V : baddegree(i) > 0 and LS(i) = 0}
6 compute C(i, �) for all � �= color(i), LS(�) = 0, and i ∈ Θ
7 k∗(i) := arg min{C(i, �) : � ∈ K} for all i ∈ Θ}
8 i∗ := arg min{C(i, k∗(i))− baddegree(i) : i ∈ Θ}
9 color(i∗) := k∗(i∗)

10 LS(i∗) := tabulength
11 for all i ∈ V
12 if LS(i) > 0 then LS(i) := LS(i)− 1
13 for all � ∈ K
14 if LS(�) > 0 then LS(�) := LS(�) − 1
15 return color

9. Application to Job Shop Scheduling Problem

Figure 1: The disjunctive graph

In this section, we describe our last application of the LSM to the job shop scheduling
problem which has been known as a notoriously difficult combinatorial optimization problem.

Definition 14 (Job Shop Scheduling Problem: JSSP)
Let N = {0, 1, · · · , n} the set of operations which must be processed on the set M =
{1, · · · ,m} of machines where 0 and n denote the starting and finishing dummy operations,
respectively. Let A be the set of pairs of operations corresponding to precedence (linear
ordering) relations between operations. For each machine k ∈ M , we denote by Ek the set
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of pairs of operations performed on machine k. The objective is to find a selection Sk in Ek

which contains exactly one of the pairs in Ek so that the completion time of the finishing
operation n is minimized. JSSP is often described by a disjunctive graph G = (V,A,E).
Figure 1 shows the disjunctive graph G. Using graph theoretic terms, we are given a set of
nodes N , the set of conjunctive arcs A, and the set of disjunctive arcs E = ∪k∈MEk. The
objective is to select one of disjunctive arcs between two operations so that the length of the
longest (critical) path between 0 and n is minimized .

We use the neighborhood used in the simulated annealing algorithm [44] and tabu search
[42]. Let D(p) the set of disjunctive arcs on longest path p. Then, the neighborhood N of
longest path p is defined by

N(p) = {p′ : p′ can be obtained from p by reversing a disjunctive arc (i, j) ∈ D(p)}.

In this case, the ground set B is the set of disjunctive arcs. So we keep the life span
LS(i, j) for each disjunctive arc (i, j) ∈ ∪k∈MEk. Given an operation i, let a(i) and b(i) be
the operations that are processed before and after i, respectively, (if it exists). When we
reverse a disjunctive arc (i, j), we set LS(i, j), LS(u, i), and LS(j, v) to a positive number,
tabulength, where u = b(i) and v = a(j).

The change in costs, i.e., the length of the longest path, can be computed in O(n) time
using the (Bellman-Ford) labeling method (see, for example [31, 39]) for each disjunctive arc
on the current longest path.

procedure LSM for JSSP
1 p := a critical path obtained by a list scheduling algorithm
2 LS(e) := 0 for all e ∈ ∪k∈MEk

3 while stopping-criterion �= yes do
4 for all disjunctive arcs (i, j) on p
5 find a critical path after reversing (i, j)
6 let p be the shortest critical path
7 let (i, j) be the corresponding disjunctive arc
8 LS(i, j) := LS((b(i), i)) := LS((j, a(j))) := tabulength
9 for all i ∈ V

10 if LS(i) > 0 then LS(i) := LS(i)− 1
11 return p

10. Results of Experiments

We briefly summarize our experimental results.
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Table 1: Results on random graphs with p = 0.5 for the MSSP.
LSM Friden [12] Gendreau [17] Feo [9] Johnson [28]

graph : G(n, p) β̂ Avg Max Avg Max Avg Max Ave Max Ave Max
G(100, 0.5) 9 9 9 9 9 9 9 - - 8.6 9
G(300, 0.5) 12 12 12 12 12 11.5 12 - - 10.9 12
G(500, 0.5) 13 13 13 13 13 12.7 13 - - 11.8 13
G(1000, 0.5) 15 15 15 15 15 - - 15 15 13.0 15
G(1500, 0.5) 16 16 16 15.6 16 - - 15.9 16 13.7 15
G(2000, 0.5) 17 16.9 17 - - - - 16.8 17 14.1 16
G(4000, 0.5) 18 17.3 18 - - - - - - 15.1 16

The computational environments
LSM Hitachi 3050

Friden VAX Station II/RC
Gendreau IBM PS/2 MODEL 70

Feo Alliant FX/80 parallel/vector computer
Johnson SGI Challenge

Table 2: Results on DIMACS Benchmarks for the MSSP.
File n Edges Clique Size Time(sec.)
c-fat200-1 200 1534 12 0.01
c-fat200-2 200 3235 24 0.05
c-fat200-5 200 8473 58 0.15
c-fat500-1 500 4459 14 0.05
c-fat500-10 500 46627 126 0.52
c-fat500-2 500 9139 26 0.03
c-fat500-5 500 23191 64 0.23
johnson16-2-4 120 5460 8 0.02
johnson32-2-4 496 107880 16 0.03
johnson8-2-4 28 210 4 0.01
johnson8-4-4 70 1855 14 0.01
keller4 171 9435 11 0.07
keller5 776 225990 27 17.27
keller6 3361 4619898 59 2113.20
hamming10-2 1024 518656 512 7.37
hamming10-4 1024 434176 40 0.56
hamming6-2 64 1824 32 0.03
hamming6-4 64 704 4 0.01
hamming8-2 256 31616 128 0.43
hamming8-4 256 20864 16 0.01
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10.1. Maximum Stable Set Problem

In this section, we show the numerical results for the MSSP. For more details, see the
companion papers [14].

We tested our algorithm on random graphs. For our random graphs we select the model
(see [4, 38]) which consists of graphs in which the edges are chosen independently with
probability p. If we define the density of a graph G as the number of edges of G = (V,E)
over the number of edges of the complete graph with |V | vertices, then for this class of
random graphs the density is very close to p. We set p = 0.5 because this class of random
graphs are the hardest one and the probabilistic estimation of the upper bound of the optimal
solution is tight. We tested three instances for each vertex size. The algorithm has been
coded in C-language, and the experiments were executed on SPARC station 2 with 16 MB.
Running time were measured by making the system call times and converting to seconds.

The efficient heuristics known in the literature are tabu search algorithms due to Friden
et al. [12] and Gendreau et al. [17]. Feo et al. [9] proposed the greedy randomized adaptive
search procedure (GRASP) for the maximum stable set problem. Dmclique is a variant on
the simple ‘semi-exhaustive greedy’ scheme for finding large stable sets used in the graph
coloring algorithm XRLF described in Johnson et al. [28]. We compare the performance of
the LSM with their methods.

Table 1 shows the results of experiments on random graphs with p = 0.5. Friden et
al.[12] sometimes failed to obtain stable sets of size 16 on the instances with n = 1500.
Our algorithm consistently finds the solutions whose values are equal to the probabilistic
estimates when the size n is 1500 or less. Gendreau et al.[17] did not always obtain the
stable sets of size 13 on the instances with n = 500. We see no major difference between
the GRASP and the LSM on random graphs, and the GRASP was competitive with the
LSM. Although we consider the computational environments, Dmclique was very fast, but
the results for random graphs were inferior to other algorithms.

We also tested our algorithm on DIMACS test problems in anonymous ftp site
dimacs.rutgers.edu. Though, the test instances are for the maximum clique problem,

we can obtain the stable set instances by complementing the edges very easily. In fact, we
modify the program by simply adding a ”not (!)” clause to the edge macro. The results are
shown in Table 2; all clique sizes obtained by our algorithm are equal to the optimal or best
known values.

10.2. Traveling Salesman Problem

Lin and Kernighan algorithm [33] for the TSP uses a deep and complicated neighborhood
and it is well known that Lin and Kernighan algorithm is superior to other heuristics. We
performed preliminary experiments for comparing the LSM based on the 2-opt neighborhood
with Lin and Kernighan algorithm. As a conclusion on the preliminary experiments, the LSM
for the TSP is not so bad, but Lin and Kernighan is superior to the LSM on the whole. So
we hereafter incorporate a deeper neighborhood like Lin and Kernighan-opt neighborhood
to our LSM.
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Table 3: Performance comparison of best upper bounds (BUB) and the total number of
iterations (TNI) for the QAP.

LSM [15] Augmented Par tabu [5]
Prob. name BUB TNI(2-opt) TNI(2-opt + n× 3-opt) BUB TNI

sko42 15812 9653 17045 15812 89432
sko49 23386 9659 17352 23386 112810
sko56 34458 20067 26787 34458 136901
sko64 48498 28324 38628 48498 145056
sko72 66256 36097 51829 66256 198129
sko81 90998∗ 36467 59066 91008 191571
sko90 115534∗ 45980 63620 115586 268416

sko100a 152002∗ 75345 126545 152014 199882
sko100b 153890 68208 123208 153890 274480
sko100c 147862∗ 79829 141229 147868 306954
sko100d 149576∗ 67788 118788 149596 257855
sko100e 149150∗ 69144 124444 149156 311458
sko100f 149036 72345 120645 149036 308587

Table 4: The average behavior of the LSM for the QAP.
Time(sec.) Solution

Prob. name Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max
sko42 297.5 473.9(115.6) 761.5 15812 15825.3(17.0) 15864
sko49 116.9 180.1(55.0) 295.4 23386 23426.5(25.1) 23462
sko56 204.4 381.3(157.0) 728.4 34458 34518.2(39.6) 34570
sko64 372.8 512.1(121.1) 725.1 48498 48552(65.4) 48962
sko72 841.5 1128.2(250.0) 1581.9 66256 66405.2(87.4) 66550
sko81 1252.6 1765.3(464.6) 2602.7 90998 91217.2(189.6) 91450
sko90 1806.9 2752.6(638.7) 3935.3 115534 115759.8(114.38) 116268

sko100a 5360.3 5461.3(102.8) 5562.4 152002 152093.9(41.1) 152222
sko100b 5505.2 5569.9(65.9) 5634.7 153890 153943.9(41.5) 154108
sko100c 6266.0 6983.9(729.6) 7701.4 147862 147893.2(23.7) 147966
sko100d 5257.7 5294.6(37.56) 5331.6 149576 149670.8(110.4) 149972
sko100e 5565.3 5941.7(382.9) 6318.2 149150 149215.9(100.9) 149694
sko100f 5342.6 5493.1(153.1) 5643.6 149036 149093.3(45.9) 149216
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10.3. Quadratic Assignment Problem

In this section, we report the results of our computational experiments. For more details,
see the companion papers [15]. All computational experiments were executed on SONY
NEWS-5000WI with 128 MB and algorithms were coded in the C language. Running time
were measured by making the system call times and converting to seconds.

Since parameter tunings would be of crucial importance, we executed extensive exper-
iments to select good or appropriate parameters for the LSM [15]. Then, we compare the
performance of the LSM with that of tabu search by Chakrapani and Skorin-Kapov [5] that
was known to be one of the best heuristic algorithms.

First, we compare the best found solutions with previous results. Since each researcher
has different computational environment, if we can know, we substitute the total number of
iterations for the executed time.

Table 3 summarizes the best upper bounds(BUB) and the total number of iterations(TNI)
achieved by the LSM and Augmented Par tabu [5]. We consider that one iteration of 3-
opt neighborhood corresponds to n times as large as one iteration of 2-opt neighborhood.
Asterisk ∗ indicates the BUB when the LSM exceeds the Augmented Par tabu. Although
we consider the iterations of 3-opt phase, every TNI of the LSM is less than that of the
Augmented Par tabu.

In Table 4, we investigate the average performance of the LSM by performing 30 runs
on each problem to obtain the sample mean, standard deviation, maximum and minimum
of the solution values, and running time.

10.4. Graph Partitioning Problem

In this section, we show the numerical results for the GPP [13]. An implementation of the
LSM for GPP was tested on SPARC station 2 with 16 MB. The programs were written in the
C-language. Running time were measured by making the system call times and converting
to seconds.

We use the following standard set of instances given by Johnson et al. [27]:

• Random graph G(n, p):
n-vertex graph obtained by setting a pair of vertices to an edge with probability p
independently of each other;

• Geometric graph (Un,d):
Let (xi, yi) be the x and y coordinates of vertex i uniformly and independently dis-
tributed in the unit square [0, 1]2. Set an edge between two vertices i and j if and only

if
√

(xi − xj)2 + (yi − yj)2 ≤ d.
We tested uniform instances of the size n = 124, 250, 500, 1000 with the expected degree
2.5, 5, 10, 20, and geometric instances of the size n = 500, 1000 with the expected degree
5, 10, 20, 40.

Table 5 summarizes the results on uniform instances. The values in Table 5 show the esti-
mated means for algorithms. The values of local search (Local Opt: 2000 runs), Kernighan-
Lin opt [29](K-L: 2000 runs), simulated annealing algorithm (Annealing: 20 runs), and the
best value (Best Found) are due to Johnson et al. [27]. The values of tabu search (Tabu:
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Table 5: Average Results on 16 Random Graphs for the GPP.

Expected Average Degree
n 2.5 5.0 10.0 20.0 Algorithm

124 24.4 78.2 194.9 474.1 Local Opt
15.4 67.1 183.5 457.5 K-L
13.5 64.2 179.0 449.9 Annealing
13 63 178 449 Best Found
13 63 178 449 LSM

250 58.4 144.2 396.3 876.0 Local Opt
35.4 123.8 372.4 843.7 K-L
32.0 116.0 359.9 831.3 Annealing
29 114 357 828 Best Found
29 114 357 828 LSM

500 105.2 291.1 706.5 1845.2 Local Opt
64.2 244.2 655.6 1785.9 K-L
57.2 223.8 633.7 1752.7 Annealing
52 219 628 1744 Best Found
49∗ 218∗ 626∗ 1744 LSM

1000 210.9 591.7 1537.9 3602.5 Local Opt
125.0 499.7 1432.6 3480.5 K-L
109.5 460.0 1376.6 3402.6 Annealing
102 451 1367 3389 Best Found
96∗ 446∗ 1362∗ 3382∗ LSM

Table 6: Best Results on 8 Geometric Graphs for the GPP.

Expected Average Degree
n 5.0 10.0 20.0 40.0 Algorithm

500 29.9 70.1 198.1 412.0 Local Opt
11.4 26.6 178.0 412.0 K-L
14.9 44.4 198.1 475.9 Annealing
4 26 178 412 Best Found
2∗ 26 178 412 LSM

1000 99.5 211.7 405.1 784.2 Local Opt
30.3 56.3 224.9 737 K-L
35.9 92.5 256.9 790.1 Annealing
3 39 222 737 Best Found
1∗ 39 222 737 LSM
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Table 7: Average Running Times in Seconds on 16 Random Graphs for the GPP.

Expected Average Degree
n 2.5 5.0 10.0 20.0 Algorithm

124 0.1 0.2 0.3 0.8 Local Opt
0.8 1.0 1.4 2.6 K-L
85.4 82.8 78.1 104.8 Annealing
0.9 1.9 1.8 1.5 LSM

250 0.3 0.4 0.8 1.3 Local Opt
1.5 2.0 2.9 4.6 K-L

190.6 163.7 186.8 222.3 Annealing
6.3 9.6 8.6 19.7 LSM

500 0.6 0.9 1.5 3.2 Local Opt
2.8 3.8 5.7 11.4 K-L

379.8 308.9 341.5 432.9 Annealing
51.0 23.0 68.7 54.3 LSM

1000 2.4 3.8 6.9 14.1 Local Opt
7.0 8.5 14.9 27.5 K-L

729.9 661.2 734.5 857.7 Annealing
122.0 164.0 45.0 95.0 LSM

Table 8: Average Running Times in Seconds on 8 Geometric Graphs for the GPP.

Expected Average Degree
n 5.0 10.0 20.0 40.0 Algorithm

500 1.0 1.6 3.2 7.2 Local Opt
3.4 4.8 7.4 11.1 K-L

293.3 306.3 287.2 209.9 Annealing
24.0 25.0 14.0 8.0 LSM

1000 2.2 3.7 7.2 18.0 Local Opt
7.6 11.9 18.9 28.7 K-L

539.3 563.7 548.7 1038.2 Annealing
302.0 280.0 37.0 58.0 LSM
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10 run) are our original. Table 6 reports the expected best value encountered in 5 runs of
Annealing, or a time-equivalent number of runs of K-L or Local Opt, and 10 run of our
result of tabu search. Asterisk (∗) in Tables shows that the value obtained by tabu search
dominates the best known value.

Tables 7 and 8 summarize the average running times of the algorithms. Average compu-
tational times of Local Opt, K-L, and Annealing are on VAX 11-750 computers with floating
point accelerators and 3 or 4 MB of main memory, and computational times of Tabu are
on SPARC station 2 with 16 MB of main memory. As the computational environments are
different each other, we cannot compare the computational time of the LSM with that of
other algorithms strictly. But the LSM renews the best known solutions of 9 benchmark
problems.

10.5. Graph Coloring Problem

In this section, we give the results of our computational experiments. All computational
experiments were executed on SPARC station 1+ with 16 MB and algorithms were coded
in C. The data structure we adopted for representing graphs is the bitmap. This technique
was also used in the programs for the maximum clique problem due to Applegate and Johnson
which can be obtained from DIMACS (DIscrete MAthematics and theoretical Computer
Science: anonymous ftp site dimacs.rutgers.edu).

In our experiments, we use the same graphs which have been used by Johnson et al. [28].

• Random Graphs (Johnson et al. and Morgenstern )
A random graph is defined by two parameters, n and p, where n describes the number
of vertices and p the probability that there is an edge between any pair of vertices
independently. In this thesis, we denote the random graph with parameter (n, p) by
G(n, p).
• Cooked Graphs (Johnson et al.)

A cooked graph is a variant of the random graph and defined by two parameters, n
and k. In cooked graphs, a chromatic number χ(G) is guaranteed to be k. In this
paper, we denote the cooked graph with parameter (k, n) by C(n, k). We can make a
cooked graph as follows:

1. Randomly we assign k colors to vertices.

2. Choose one representative vertex from each color class and make the clique (com-
plete graph) among the representative vertices .

3. For each pair (u, v) of vertices not in the same color class, draw an edge between
u and v with probability k/2(k − 1).

We compare three fixed-k approaches; fixed-k annealing [28], Friden and de Werra’s
fixed-k tabu search [24] and our fixed-k tabu search. Johnson et al. improved the annealing
for the graph coloring problem which was proposed by Chams et al. [6]. Table 9 - 11 shows
the computational results on the random graphs and the cooked graphs. LB means the
probabilistic lower bound. The results are mixed and we can not tell our proposed algorithm
is superior to other fixed-k approaches,but in comparison with the Friden and de Werra’s
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Table 9: The computational results on the random graph G(n, 0.5) for the GCP.
proposed
fixed-k tabu
search

fixed-k an-
nealing [28]

fixed-k tabu
search [6]

|V | = n LB χ̃(G) Colors Time(sec.) Colors Time(sec.) Colors Time(sec.)
125 16 17 18 1.1 19 6.6 19 7.0
250 27 29 31 6.8 31 111.2 33 33.1
500 46 49 54 95.3 53 2987.3 57 512.6

1000 85 86 93 527.5 97 6913.2 96 2549.0

Table 10: The computational results on the random graph G(n, 0.1) for the GCP.
proposed
fixed-k tabu
search

fixed-k an-
nealing [28]

fixed-k tabu
search [6]

|V | LB χ̃(G) Colors Time(sec.) Colors Time(sec.) Colors Time(sec.)
125 5 5 6 0.1 6 0.4 6 1.7
250 7 8 9 0.8 9 5.4 9 9.5
500 11 13 13 46.8 13 475.0 15 24.6

1000 19 21 23 60.0 27 48.0 26 105.1

Table 11: The computational results on the random graph G(n, 0.9) for the GCP.
proposed
fixed-k tabu
search

fixed-k an-
nealing [28]

fixed-k tabu
search [6]

|V | LB χ̃(G) Colors Time(sec.) Colors Time(sec.) Colors Time(sec.)
125 40 43 44 14.2 44 45.6 45 22.3
250 70 71 74 23.3 74 7809.8 75 563.7
500 122 128 139 80.3 133 7721.3 143 1293.1

1000 217 226 247 3864.9 283 5187.7 283 1285.9

fixed-k tabu search [24], the proposed algorithm dominates it in the value of colors and the
computational time. The fixed-k approaches cannot get a near optimal value and the best
known value of χ(G).

10.6. Job Shop Scheduling Problem

In this section, we report the numerical results for the JSSP [43]. All computational ex-
periments were executed on SPARC station 2 with 16 MB and algorithms were coded in C
language. Running time were measured by making the system call times and converting to
seconds.

In our experiments, we use benchmark problems of the JSSP. We compare our algorithms
with the previous algorithms such as M. Dell’Amico and M. Trubian [8] and J. Adams and
E. Balas and D. Zawack’s shifting bottleneck procedure [2]. M. Dell’Amico and M. Trubian
also applied tabu search to the JSSP. Their algorithms are superior to the previous heuristics
but have many parameters which are to be optimized.
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Table 12: Results on Benchmark problems for the JSSP

opt. or DT [8] ABZ [2] LSM
problem n ×m (best) Cbest C t C t Cbest C t

MT10 [37] 10×10 930 935 948.4 155.8 930 851 934 939.1 88.3
MT20 [37] 20× 5 1165 1165 1166.8 260.2 1178 80 1165 1167.0 118.3
ABZ5 [2] 10×10 1234 1236 1237.6 139.5 1239 1503 1238 1238.8 51.4
ABZ6 [2] 10×10 943 943 943.8 86.8 943 1101 943 944.2 64.9
ABZ7 [2] 20×15 (665) 667 675.6 320.1 710 1269 667 671.1 850.6
ABZ8 [2] 20×15 (670) 678 684.2 336.1 716 1775 676 682.5 1158.5
ABZ9 [2] 20×15 (686) 692 700.2 320.8 735 1312 686 691.5 1346.0

C The average of objective function value
Cbest The best of objective function value
t The average of computational time

The computational environments
LSM SPARC station 2
ABZ SPARC station 2
DT IBM PC 386 (20 MHz)
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Table 12 summarizes the results on these algorithms. Our algorithms are competitive
with two other algorithms.

The computational time of the LSM is inferior to the tabu search of Dell’Amico et al.
But their algorithms have many parameters and it is difficult to optimize all parameters for
each problem. For large problems, the shifting bottleneck procedure requires a large amount
of computational time compared with two other algorithms.

11. Concluding Remarks

We showed a new variant of local search called the life span method and illustrated this
technique by applying to several combinatorial optimization problems. We have already
done extensive experiments including parameter optimization; but we shortly summarized
the results of experiments in this paper. All experiments are done on the distributed test
instances and/or the newly generated random instances. The results are very encouraging;
the proposed algorithms dominate the previously proposed algorithms both in speed and
accuracy of solutions. We have found that we can tailor the parameters of our method
to each individual problem class, and also to each individual member of the class, very
effectively. While often the goal is to have a single set of parameters to apply to many
different problems from a given class, we point out that there can also be merit in having a
method whose parameters can be adjusted for individual problems until very good outcomes
are obtained. All the results are included in the companion papers in which we also describe
implementation details. This framework gives very good outcomes for the amount of effort
needed to create the implementation.
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