
Approximation of Optimal Two-Dimensional

Association Rules for Categorical Attributes
Using Semidefinite Programming�

Katsuki Fujisawa1, Yukinobu Hamuro2, Naoki Katoh1, Takeshi Tokuyama3,
and Katsutoshi Yada2

1 Department of Architecture and Architectural Systems, Kyoto University
Kyoto, Japan, email: {katsuki,naoki}@archi.kyoto-u.ac.jp

2 Department of Business Administration, Osaka Industrial University
Daito, Osaka, Japan email: {hamuro,yada}@adm.osaka-sandai.ac.jp

3 Tokyo Research Laboratory, IBM Japan
Yamato, Japan email: ttoku@trl.ibm.co.jp

Abstract. We consider the problem of finding two-dimensional associ-
ation rules for categorical attributes. Suppose we have two conditional
attributes A and B both of whose domains are categorical, and one bi-
nary target attribute whose domain is {“positive”, “ negative”}. We want
to split the Cartesian product of domains of A and B into two subsets
so that a certain objective function is optimized, i.e., we want to find
a good segmentation of the domains of A and B. We consider in this
paper the objective function that maximizes the confidence under the
constraint of the upper bound of the support size. We first prove that
the problem is NP-hard, and then propose an approximation algorithm
based on semidefinite programming. In order to evaluate the effectiveness
and efficiency of the proposed algorithm, we carry out computational ex-
periments for problem instances generated by real sales data consisting
of attributes whose domain size is a few hundreds at maximum. Approxi-
mation ratios of the solutions obtained measured by comparing solutions
for semidefinite programming relaxation range from 76% to 95%. It is
observed that the performance of generated association rules are signifi-
cantly superior to that of one-dimensional rules.

1 Introduction

In recent years, data mining has made it possible to discover valuable rules by
analyzing huge databases. Efficient algorithms for finding association rules have
been proposed [1, 9, 10, 20, 24], and classification and regression trees that use
these rules as branching tests have been extensively studied [19, 21, 22].

One of important application fields of data mining is marketing. In particular,
we are interested in developing an effective strategy of direct mail distribution
� Research of this paper is partly supported by the Grant-in-Aid for Scientific Research

on Priority Areas (A) by the Ministry of Education, Science, Sports and Culture of
Japan.



based on customer purchase data accumulated in databases. Our research stems
from the following real problem related to direct mail distribution. Kao, a leading
manufacturer of household products in Japan, developed a new brand Lavenus in
1996 which covers several different categories of products ranging from shampoo
& conditioners, hair care products, hair dye and so on. But, for the first one
year, it was not well recognized by customers. Kao then decided to start a joint
sales promotion with Pharma, which is a drugstore chain in Japan that has
approximately three million members (Pharma has been maintaining detailed
data of customers’ purchase data for more than ten years. See [13] for data
mining activities of Pharma). The sales promotion was done by sending direct
mails to potential users of Lavenus. In order to establish an effective direct mail
plan, it is crucial to select customers who have high potential to buy Lavenus in
the near future.

For this purpose, Pharma investigated purchase data of Lavenus users, i.e.,
customers who belong to Pharma’s member club and had already bought Lavenus,
and identified commodities that are sold well for them. Under the hypothesis
that those who frequently buy these commodities but have not yet purchased
Lavenus are possibly likely to become Lavenus users in near future, Kao sent
direct mails with free sample coupon to such customers. Kao and Pharma ob-
served the effectiveness of this sales promotion. However, this result raises the
following question: What is the best strategy to find customers to be targeted
for direct mail promotion? This question motivates our study.

In view of this motivation, hoping that more refined rules may possibly find
customers that have higher response rate to direct mails, we study the problem of
finding two-dimensional association rules for categorical attributes. Association
rules that classify a target attribute will provide us with valuable information
which may in turn helps understand relationships between conditional and target
attributes. Association rules are used to derive good decision trees. As pointed
out by Kearns and Mansour [14], the recent popularity of decision trees such
as C4.5 by Quinlan [22] is due to their simplicity and efficiency and one of the
advantage of using decision trees is potential interpretability to humans.

One-dimensional association rules for categorical attributes can be efficiently
obtained [20]. On the other hand, as will be shown in this paper, finding two-
dimensional association rules for categorical attributes is NP-hard. Nevertheless
we shall develop a practically efficient approximation algorithm for obtaining
two-dimensional association rules for categorical attributes. One of the advan-
tages of two-dimensional association rules over one-dimensional ones is that two-
dimensional rules usually induce a decision tree of smaller size that has a higher
classification ability.

We assume that a database consists of only categorical attributes. Let R be
a database relation. We treat one special attribute as a target attribute. Other
attributes are called conditional attributes. We assume in this paper that the
domain of a target attribute is {0, 1}, i.e., 1 means “positive” response and 0
“negative”. Among conditional attributes, we focus on two particular attributes
A and B. Let dom(A) and dom(B) denote the domain of A and B, respectively.



Let nA = |dom(A)| and nB = |dom(B)|, and let U ⊆ dom(A), V ⊆ dom(B). For
notational convenience, let S = U × V and S̄ = dom(A) × dom(B) − (U × V ),
where dom(A)×dom(B) denotes the Cartesian product of dom(A) and dom(B).
We then split dom(A)×dom(B) into (S, S̄). Ideally, we want to find S for which
all records t ∈ R with (t[A], t[B]) ∈ S take value ‘1’ in a target attribute, while
other records t ∈ R with (t[A], t[B]) ∈ S̄ take value ‘0’. Since such segmentation
is impossible in general, we introduce a certain objective function f(S, S̄) that
evaluates the goodness of the segmentation.

We consider in this paper the problem that maximizes the confidence under
the constraint that the support does not exceed a given threshold. We trans-
form the problem into the one that finds a dense subgraph on weighted bipartite
graphs appropriately defined. We first prove its NP-hardness by reduction from a
balanced complete bipartite subgraph problem which is known to be NP-complete
(see [11, 12]). We shall then focus on an approximation algorithm. We propose
in this paper an approximation algorithm based on a semidefinite programming
(SDP) relaxation. The idea of relaxation is similar to the one by Srivastav and
Wolf [23] for the densest subgraph problem on general graphs. The densest sub-
graph problem has recently been studied by several researchers. For the case
where weights satisfy the triangle inequality, Arora et al. [2] proposed a PTAS
(polynomial-time approximation scheme) for k = Ω(n), where k is a problem
parameter that constrains the lower bound on the vertex size of subgraphs we
seek for. For general case, only Õ(n0.3885..) approximation ratio is known for
general k [16]. For k = Θ(n), a few papers presented algorithms constant ap-
proximation ratios [3, 23]. After a solution for SDP relaxation is obtained, the
conventional approach obtains a rounded solution based on random hyperplane
cutting. On the other hand, we introduce a refined rounding technique by making
use of the special structure of bipartite graphs. Although we have not yet ob-
tained an improved approximation ratio for our problem, we have implemented
the proposed algorithm and carried out computational experiments to see its
effectiveness and efficiency. In our experiments, we have employed SDPA which
is a software developed by one of the authors [7] for semidefinite programming
problems. Although SDP relaxation is known to be powerful in approximately
solving densest subgraph problems, there seems to be no report on computa-
tional experiments, as far as the authors know. Thus, this paper seems to be the
first to report computational results for SDP-based approximation algorithms
for such problems although our algorithm is limited to bipartite graphs.

Problem instances we have solved have sizes (i.e., nA × nB) ranging from
1,600 to 100,000, all of which are obtained through Pharma from real sales data
related to Lavenus sales promotion. We observe that the proposed algorithm
efficiently produces good approximate solutions in general for both small and
large problem instances. In fact, the average of ratios of the objective value of
the obtained solutions to that of SDP solutions exceeds 85%. We also observe
that the obtained two-dimensional association rules outperform one-dimensional
rules in solution quality. Therefore, we believe that the proposed approach will



be effective for various data mining applications that deal with categorical at-
tributes.

2 Problem Formulation

For simplicity, we assume dom(A) = {1, 2, . . . , nA}, dom(B) = {1, 2, . . . , nB}.
Let n = nA + nB. Let sij denote the number of records t such that t[A] = i and
t[B] = j. Among such sij records, let hij denote the number of records such that
t[C] = 1 (i.e., the value of a target attribute C is positive), and let h̄ij = sij−hij .
For R ⊂ dom(A) × dom(B), let

s(R) =
∑

(i,j)∈R

sij , h(R) =
∑

(i,j)∈R

hij .

Suppose we are a given a two-dimensional association rule r defined over con-
ditional attributes A and B and a target attribute C. Let S denote the set of
(i, j) ∈ dom(A) × dom(B) such that a tuple t with t[A] = i, t[B] = j satisfies
the condition of rule r. Then the rule r can be identified with S. Then s(S), the
number of tuples satisfying the condition of r, is called the support of S.

h(S), the number of tuples t that satisfies the condition of r as well as a
target condition (i.e., r[C] = 1), is called the hit of r. The ratio h(S)/s(S) is
called the confidence of S, or conf(S).

We are interested in a rule r such that the corresponding subset S of dom(A)×
dom(B) takes the form of S = U × V for some U ⊂ dom(A) and V ⊂ dom(B).

The problem we consider in this paper is to maximize h(S) under the con-
straint of h(S) ≤ M , and is formulated as follows.

P : maximize h(S) (1)
subject to S = U × V, U ⊂ dom(A), V ⊂ dom(B) (2)

s(S) ≤ M, (3)

where M is a given positive constant. The practical role of the constraint (3) in
terms of our application of direct mail distribution is to control the number of
customers targeted for direct mail.

Lemma 1. Problem P is NP-complete.

Proof. Reduction is done from problem balanced complete bipartite subgraph
which is known to be NP-complete [11, 12]. Given a bipartite graph G = (U, V, E)
and a positive integer m, it asks whether the graph contains a subgraph Km,m

in G. Letting m be a prime integer satisfying m2 > n, we construct an instance
of problem P as follows. Letting dom(A) = U and dom(B) = V , define hij = 1
if e = (i, j) ∈ E for i ∈ U, j ∈ V and hij = 0 otherwise. In addition, define
sij = 1 for all i, j with i ∈ U, j ∈ V . We set M = m2. Then, it is easy to see
that the instance has a solution of objective value M = m2 (i.e., confidence of
one) if and only if the bipartite graph has a subgraph Km,m.

From this lemma, we then focus on an approximation algorithm in the next
section.



3 Approximation Algorithm

The problem of finding a densest subgraph in general graphs has been studied by
several authors as mentioned in Section 1, and approximation algorithms have
been proposed. Up to now, neither constant- nor logarithmic-approximation al-
gorithms have been proposed. Since we are focusing on our attention to bipartite
graphs, it may be possible to develop better approximation algorithms. Although
we have not yet succeeded yet in such an attempt, we formulate the problem P
as a semidefinite programming problem in a standard way used in [23], and we
shall see its approximation ability through computational experiments.

In the formulation as SDP, we introduce an integer variable xi for each i ∈
dom(A) = {1, 2, . . . , nA} and a variable yj for each j ∈ dom(B) = {1, 2, . . . , nB}.
We interpret xi as xi = 1 if i ∈ U and xi = −1 otherwise. Similarly, yj is
interpreted as yj = 1 if j ∈ V and yj = −1 otherwise.

Then the problem P can be rewritten as follows:

P : maximize 1
4

∑nA

i=1

∑nB

j=1 hij(x0 + xi)(x0 + yj)
subject to 1

4

∑nA

i=1

∑nB

j=1 sij(x0 + xi)(x0 + yj) ≤ M,

x0 = 1.

(4)

For the ease of exposition, by letting x = (x0, x1, . . . , xnA) and y = (y1, y2, . . . , ynB ),
we introduce an (n + 1)-dimensional vector z = (x, y) such that zi = xi for i
with 0 ≤ i ≤ nA and zi = yi−nA for i with nA + 1 ≤ i ≤ nA + nB(= n). In
addition, we define

h′
ij =




hi,j−nA/2 for 1 ≤ i ≤ nA and nA + 1 ≤ j ≤ nA + nB,
hi−nA,j/2 for nA + 1 ≤ i ≤ nA + nB and 1 ≤ j ≤ nA,
0 otherwise.

We then have the following formulation equivalent to (4).

P : maximize 1
4

∑n
i=1

∑n
j=1 h′

ij(z0 + zi)(z0 + zj)
subject to 1

4

∑n
i=1

∑n
j=1 sij(z0 + zi)(z0 + zj) ≤ M,

z0 = 1.

In the same manner as is taken in existing semidefinite programming relax-
ations, we relax the integrality constraint and allow the variables to be vectors in
the unit sphere in Rn+1. Letting B1 be the unit sphere in Rn+1, the relaxation
problem can be written as follows:

SDP1 : maximize 1
4

∑n
i=1

∑n
j=1 h′

ij(z0 + zi) · (z0 + zj)
subject to 1

4

∑n
i=1

∑n
j=1 sij(z0 + zi) · (z0 + zj) ≤ M,

z0 = (1, 0, 0, . . . , 0).
(5)

Introducing the variable vij with vij = xi ·xj the above problem can be rewritten
as follows:

SDP2 : maximize 1
4

∑n
i=1

∑n
j=1 h′

ij(1 + v0i + v0j + vij)
subject to 1

4

∑n
i=1

∑n
j=1 sij(1 + v0i + v0j + vij) ≤ M,

vii = 1 for i = 0, 1, . . . , n,
Y = {vij} : symmetric and positive semidefinite.

(6)



This problem can be solved within an additive error δ of the optimum in time
polynomial in the size of the input and log(1/δ) by interior point algorithms.
After obtaining an optimal solution v∗ij for SDP2, we can obtain an optimal
solution z∗i of SDP1 by a Cholesky decomposition. We then round each unit
vector z∗i to +1 or −1. In the conventional method, this is done by choosing
a random unit vector u on B1 and by rounding z∗i to 1 or −1 depending on
the sign of the inner product of u and z∗i . Let ẑ denote the rounded solution so
obtained.

Among several softwares for SDPs that are currently available, we use SDPA
(Semi-Definite Programming Algorithm) [7] in our implementation. SDPA is a
C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-
point method [15, 18] for solving the standard form of SDP. The SDPA incor-
porates data structures for handling sparse matrices and an efficient method
proposed by Fujisawa et al. [8] for computing search directions for problems
with large sparse matrices.

In order to obtain reasonably good solutions from SDP solutions, we imple-
ment the following two algorithms.

Algorithm 1: Instead of using the conventional randomized rounding scheme,
the algorithm uses a refined way to round an SDP solution. We do not choose a
random unit vector, but instead we try all vectors z∗k with 1 ≤ k ≤ nA. In fact,
from our experimental results, it is worthwhile to try many different vectors in
order to obtain better approximate solutions for P . Namely, for a fixed z∗k with
1 ≤ k ≤ nA (we call it a basis vector), we round z∗i to 1 or −1 for other i �= k
with 1 ≤ i ≤ nA, depending on the sign of the inner product of z∗k and z∗i . We
round z∗k to 1. Let xk

i for i with 1 ≤ i ≤ nA be the rounded solution so obtained.
For each rounded solution {xk

i | 1 ≤ i ≤ nA} with 1 ≤ k ≤ nA, we obtain a
rounded solution {yk

j | 1 ≤ j ≤ nB} from z∗i with nA + 1 ≤ j ≤ n based on the
following lemma.

Lemma 2. For problem P , when a rounded solution {xk
i | 1 ≤ i ≤ nA} with

k = 1, 2, . . . , nA is given, the optimal assignment of {yk
j | 1 ≤ j ≤ nB} can be

obtained by solving a knapsack problem with a single constraint.

Proof. For problem P , introducing a new variable y′
j = (y0 + yj)/2 which takes

0 or 1, Problem P becomes an ordinary knapsack problem.

Based on this lemma, in order to solve P , we solve nA distinct knapsack problems
because we try nA distinct basis vectors. Thus, we obtain nA feasible solutions
of P . In addition, by exchanging the role of x and y, we do the above task in
the same way to get nB feasible solutions as well. Thus, we obtain n feasible
solutions of P in total. The algorithm outputs the one that maximizes the ob-
jective function of P . In our implementation, we do not exactly solve knapsack
problems. Instead we use the heuristic developed by Kubo and Fujisawa [17] who
have shown that the heuristic is fast and produces very good solutions.

Algorithm 2: In order to obtain a feasible solution from an SDP solution z∗i ,
we adopt the conventional rounding method explained above. The solution ẑ so



obtained may violated the constraint of (3) or it has enough room for improve-
ment ((3) is satisfied and some ẑi can be changed from −1 to 1 to increase the
objective value without violating (3)).

(1) If ẑ is feasible, we check whether changing ẑi from −1 to +1 still preserves
the constraint (3). Let I be the set of such i. For each i ∈ I, let δs

i and δh
i be the

increase of the objective function of P and the left-hand side of the constraint of
(3) according to the change of ẑi from −1 to +1. The algorithm chooses i∗ ∈ I
with the largest δh

i /δs
i and sets ẑi∗ = 1. Deleting i∗ from I, we repeat this process

as long as the current solution is feasible. This is a greedy-type algorithm.
The solution obtained in this manner is then further improved in a manner

similar to Algorithm 1. Namely, for a given solution ẑ, we fix its x-part (resp.
y-part) while we treat the y-part (resp. x-part) as free variables in order to
maximize the objective function of P . This problem is again a knapsack problem,
and is also solved by the heuristic developed by Kubo and Fujisawa [17].

(2) If ẑ is infeasible, we shall change some ẑi from +1 to −1. This change is
also made in a greedy manner as in (1). We also improve the obtained solution
by applying the heuristic by [17] after formulating the problem as a knapsack
problem.

In the implementation of Algorithm 2, we generate random unit vectors u on
B1 as many times as in Algorithm 1. Among the solutions obtained above, we
choose the best one.

4 Computational Experiments

In order to see the effectiveness and efficiency of the proposed two algorithms,
we have performed computational experiments. Problem instances are generated
from sales data related to Lavenus sales promotion mentioned in Section 1.
We have chosen in our experiments six stores different from those for which
Pharma performed experiments, and used sales data for three months starting
from March of 1997. We have focused on customers who belongs to Pharma’s
member club and visited those stores at least three times during those three
months. We concentrate on the same 660 brands correlated to Lavenus products
that Pharma identified. Those brands are classified into seven classes as follows:

Table 1. Seven categories of commodities

class # description # of brands

1 medical and pharmaceutical products 187
2 medical appliances and equipments 56
3 health foods 38
4 miscellaneous daily goods 252
5 cosmetics 76
6 baby articles 43
7 others 8



We consider that these seven classes are different attributes. The domain of
an attribute is a set of brands that fall into the corresponding class. Let sij stand
for the number of customers who bought brands i and j. Among such customers
let hij denote the number of customers who also bought Lavenus products. We
generate problem instances by choosing two distinct classes. We also generate
problem instances of larger size by grouping seven classes into two disjoint sets.
In this case, each set is regarded as a single attribute. The problem instances we
generated for computational experiments are listed in Table 2. For each problem
instance we have tested two or three different values of M .

In order to compare the performance of two-dimensional rules generated by
our algorithms with one-dimensional ones, we have considered the following prob-
lems QA and QB. Let

si. =
nB∑
j=1

sij , s.j =
nA∑
i=1

sij .

hi. and h.j are similarly defined.

QA : maximize {
∑
i∈U

hi. | U ⊂ dom(A),
∑
i∈U

si. ≤ M}. (7)

QB : maximize {
∑
j∈V

h.j | V ⊂ dom(B),
∑
i∈V

s.j ≤ M}. (8)

Both problems are knapsack problems and are solved by applying the algorithm
of [17]. We then choose the better one between the obtained two solutions.

Computational results for Problem P are shown in Table 3. Experiments have
been carried out on DEC Alpha 21164 (600MHz). The first column indicates the
problem No. and the problem size (nA × nB). The second column indicates the
overall average of the confidence, i.e.,

∑
hij/

∑
sij where the sum is taken over

all pairs of brands (i, j) that belong to dom(A) × dom(B). The third column
shows the ratio of M to

∑
sij , where the sum is taken over all pairs of brands

that belong to dom(A)×dom(B). The fourth column represents the ratio of the
objective value for an approximate solution to the upper bound of the optimal
objective value obtained by SDP. Here the approximate solution indicates the
better one between those obtained by Algorithms 1 and 2. The fifth column indi-
cates CPU time spent by SDPA software. The sixth, the seventh and the eighth
columns indicate the confidence of two-dimensional rules derived by Algorithms
1 and 2, and of one-dimensional rule, respectively. The asterisk ∗ indicates that
it exhibits the better performance than the one without ∗. We see from the table
that the proposed algorithms produce good approximate solutions in a reason-
able amount of time. The time spent for obtaining one rounded solution from
SDP solution by both Algorithms 1 and 2 ranges from 1 to 13 seconds depending
the problem size (most of the time is spent for solving knapsack problems). Since
we obtain n different candidate solutions for both Algorithms 1 and 2, the time
required for obtaining the best approximate solution from an SDP solution is, on
the average, three times larger than that for obtaining an SDP solution. Notice
that for the cases of M/

∑
sij = 1/8, we see a significant difference between



the confidence of two-dimensional association rules and that of one-dimensional
rules.

As for comparison of Algorithms 1 and 2, it is observed that Algorithm 2
produces better solutions for many cases while the difference of performances
between Algorithms 1 and 2 gets closer as

∑
hij/

∑
sij becomes smaller. In

particular, for problems 8 and 9 with M/
∑

sij = 1/16, Algorithm 1 exhibits
better performance.

Notice that for two attributes A and B in our problem instance, s(R) for
R = U×V with U ⊂ dom(A) and V ⊂ dom(B) does not represent, in general, the
number of customers who bought at least one brand in U and at least one brand
in V because a single customer may have bought many pairs of brands (i, j) ∈ R
and such a customer is counted the same many times in s(R). Therefore, in
order to evaluate the practical effectiveness of the rules generated, we need to
calculate the number of customers that satisfy the condition of the association
rule obtained for each problem instance, and the number of customers that
satisfy the target condition (i.e., bought Lavenus products). We call the former
number c-support, and the latter c-hit (“c-” is attached in order to distinguish
the support and the hit defined in Section 2). We call the ratio of c-hit to c-
support a hit ratio of the rule.

We have computed the c-supports, c-hits and hit ratios of the four two-
dimensional rules obtained by our algorithm for the last two problem instances,
i.e., the rules found in the second last problem instance for M/

∑
sij = 1/8

and 1/4 (denoted by Rules 1 and 2, respectively), and the rules found in the
last problem instance for M/

∑
sij = 1/8 and 1/4 (denoted by Rules 3 and 4,

respectively). Results are summarized in Table 4. In the second last and last
problem instances, numbers of customers that bought at least one brand from A
and at least one brand from B are 4822 and 5190, respectively, and the numbers
of Lavenus users among them are 184 (3.8%) and 198 (3.8%). Therefore, as seen
from Table 3, our algorithm found a good customer segmentation.

As mentioned in Section 1, Kao and Pharma, in their experiments, adopted
the rule to select the customers for direct mail distribution such that they bought
at least three distinct brands for a certain time period from among 660 ones
that Pharma identified. Let us call the rule at-least-3 rule. We can generalize
this rule to at-least-k rule. For comparison, we consider k with 3 ≤ k ≤ 8. We
have computed the c-supports, c-hits and hit ratios for such rules. The results
are summarized in Table 3. We see from the table that Rules 2 and 4 are a bit
worse than at-least-6 or 7 rule, while Rules 1 and 3 are better than at-least-8
rule.

5 Conclusion

We have proposed an approximation algorithm based on SDP relaxation for find-
ing optimal two-dimensional association rules for categorical attributes. From
computational experiments, it was observed that the proposed algorithm finds
a good segmentation in a reasonable amount of time. We finally observed how



effective the rules obtained are in terms of customer segmentation by applying
the algorithm to real sales data.

There are still several tasks remaining for future research.

(1) First, we want to improve an approximation ratio of problem P , i.e., the
densest subgraph problem for bipartite graphs. The current best ratio is the
same as the one obtained for general graphs.

(2) The proposed algorithm can be extended to the problems with entropy gain
or interclass maximization in a straightforward manner. However, it requires
more computation time. So, we need to further improve the practical effi-
ciency of the algorithm.

(3) We would like to conduct an experiment to see the robustness of the obtained
two-dimensional association rules in terms of the ability of future forecasting.

(4) From the viewpoint of promotion sales through direct mail distribution, we
would like to carry out the experiments to see the difference between response
rates of customers selected by the rules obtained in our algorithm and of
those by other rules.

Acknowledgments

Computational experiments have been carried out with assistance of Mr.
Yoshihiro Kanno, who is a graduate student in Department of Architecture and
Architectural Systems, Kyoto University. His efforts are gratefully acknowledged.
We also express our gratitude to Pharma G&G Corp. for kindly providing us
with their sales data.

References

1. R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of
items in large databases, Proc. of the ACM SIGMOD Conference on Management
of Data, 207-216, 1995.

2. S.Arora, D. Karger, and M.Karpinski, Polynomial time approximation schemes for
dense instances of NP-hard problems, Proc. 27th ACM Symposium on Theory of
Computing, 284-293, 1995.

3. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, Greedily finding a dense
subgraph, Proc. of the 5th Scandinavian Workshop on Algorithm Theory (SWAT),
LNCS 1097, 136-148, Springer, 1996.

4. T. Asano, D. Chen, N. Katoh, and T. Tokuyama, Polynomial-time solutions to
image segmentation problems, Proc. of 7th ACM/SIAM Symposium on Discrete
Algorithms, pp. 104-113, 1996.

5. U. Feige and M. Seltser, On the densest k-subgraph problems, Technical Report,
Dept. of Applied Mathematics and Computer Science, The Weizmann Institute,
September, 1997.

6. A. Frieze and M. Jerrum, Improved algorithms for Max K-cut and Max bisection,
Algorithmica, 18 (1997), 67-81.

7. K. Fujisawa, M. Kojima and K. Nakata, SDPA (Semidefinite Programming Algo-
rithm) –User’s Manual–., Tech. Report B-308, Department of Mathematical and
Computing Sciences, Tokyo Institute of Technology, Japan, 1998.



8. K. Fujisawa, M. Kojima and K. Nakata, Exploiting Sparsity in Primal-Dual
Interior-Point Methods for Semidefinite Programming, Mathematical. Program-
ming, Vol. 79, pp. 235-253, 1997.

9. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Constructing efficient
decision trees by using optimized association rules. Proc. of 22nd VLDB Confer-
ence, 146-155, 1996.

10. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. ”Data Mining Using
Two-Dimensional Optimized Association Rules: Scheme, Algorithms, and Visu-
alization”, Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, pages 13-23, June 1996, ACM Press.

11. M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the Theory
of NP-completeness, Freeman, 1979.

12. D.S. Johnson, The NP-completeness column: An ongoing guide, Journal of Algo-
rithms, Vol.8 (1984), 438-448.

13. Y. Hamuro, N. Katoh, Y. Matsuda and K. Yada, Mining Pharmacy Data Helps to
Make Profits, Data Mining and Knowledge Discovery. Vol.2, No.4, (1998), pp.391-
398.

14. M. Kearns and Y. Mansour, On the boosting ability of top-down decision tree
learning algorithms, Journal of Computer and System Sciences, 58 (1999) 109-128.

15. M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone
semidefinite linear complementarity problems, SIAM Journal on Optimization, Vol.
7, pp. 86-125, 1997.

16. G. Kortsarz and D. Peleg, On choosing a dense subgraph, Proc. of 34th IEEE
Symp. on Foundations of Computer Sci., 692-701, 1993.

17. M. Kubo and K. Fujisawa, The Hierarchical Building Block Method and the Con-
trolled Intensification and Diversification Scheme – Two New Frameworks of Meta-
heuristics –, unpublished manuscript, 1999.

18. S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM
Journal on Optimization, Vol 2, pp. 575–601, 1992.

19. Y. Morimoto, T. Fukuda, S. Morishita and T. Tokuyama, Implementation and
evaluation of decision trees with range and region splitting, Constraint, 2(3/4),
(1997), 163-189.

20. Y. Morimoto, T. Fukuda, H. Matsuzawa, K. Yoda and T. Tokuyama, ”Algo-
rithms for Mining Association Rules for Binary Segmentations of Huge Categorical
Databases”, Proceedings of VLDB 98, New York, USA, August 1998.

21. J.R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986), 81-106.
22. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
23. A. Srivastav and K. Wolf, Finding dense subgraphs with semidefinite programming,

Approximation Algorithms for Combinatorial Optimization, LNCS 1444, 181-191,
Springer, 1998.

24. K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing
Optimized Rectilinear Regions for Association Rules, Proceedings of Knowledge
Discovery and Data Mining 1997 (KDD ’97), AAAI, Newport Beach, USA, August
1997, AAAI Press.



Table 2. Problem instances generated for numerical experiments

problem # (1) (2) (3) (4) (5) (6) (7) (8) (9)

classes of A 2 3 5 2 5 5 1 1,2 1,5,6

classes of B 1 4 1 4 4 1,2,3 4 3,4,5,6,7 2,3,4,7

Table 3. Computational results for problem instances tested

problem # ave. confidence approx. time confidence confidence confidence
& (

∑
hij/

∑
sij)

M∑
sij

ratio (sec.) (2-D rule) (2-D rule) (1-D rule)

size nA × nB Algo. 1 Algo. 2

(1) 6.3% 1/8 88% 27.5 ∗25.3% 23.0% 19.9%
56 × 187 (132/2085) 1/4 89% 25.7 15.5% ∗16.5% 15.5%

(2) 7.4% 1/8 82% 47.7 36.9% ∗38.2% 30.0%
38 × 252 (93/1256) 1/4 91% 45.0 23.9% ∗25.5% 21.3%

(3) 7.8% 1/8 83% 39.7 26.3% ∗30.0% 24.7%
76 × 187 (154/1976) 1/4 91% 36.2 21.7% ∗21.9% 19.4%

(4) 9.3% 1/8 89% 63.0 ∗28.7% ∗28.7% 23.0%
56 × 252 (477/5149) 1/4 95% 54.0 20.7% ∗20.9% 17.6%

(5) 7.9% 1/8 85% 76.9 22.5% ∗22.9% 19.4%
76 × 252 (491/6194) 1/4 90% 72.7 16.0% ∗17.0% 15.1%

(6) 7.3% 1/8 84% 101.1 27.3% ∗29.5% 23.9%
76 × 281 (187/2578) 1/4 91% 87.1 18.8% ∗20.8% 18.8%

(7) 6.9% 1/8 90% 211.9 22.3% ∗22.5% 20.4%
187 × 252 (1476/21513) 1/4 91% 184.2 14.4% ∗20.8% 14.4%

(8) 6.9% 1/16 77% 739.7 ∗29.3% 25.6% 24.6%
243 × 417 (2409/35133) 1/8 86% 848.3 21.0% ∗21.2% 19.8%

1/4 94% 847.3 15.1% ∗16.2% 15.1%

(9) 6.4% 1/16 76% 814.8 ∗27.0% 25.1% 24.2%
306 × 354 (2545/39470) 1/8 87% 851.7 ∗20.0% ∗20.0% 18.7%

1/4 95% 757.8 14.4% ∗15.2% 14.4%

Table 4. Comparison of two-dimensional rules and conventional rules in terms of c-
support, c-hit and hit ratio

rules Rule 1 Rule 2 Rule 3 Rule 4 at-least-k rules
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

c-support 916 1602 1126 1921 5806 4009 2775 1961 1375 959

c-hit 83 112 95 114 253 214 169 137 103 75

hit ratio 9.1 % 7.0% 8.4% 5.9% 4.4% 5.3% 6.1% 7.0% 7.5% 7.8%


