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Abstract

An efficient algorithm for the approximate solution of the maximum cardinality
stable set problem is presented. The algorithm is based on a variant of tabu search
which we call the life span method. Numerical experiments on random and benchmark
instances show that our algorithm dominates all the algorithms given in the literature
both in accuracy of solutions and in speed. We also investigate how to tune up our
implementation and to optimize the parameters via extensive numerical experiments.
Key words: maximum stable set problem, maximum clique problem, approximate
algorithm, experimental analyses, tabu search, life span method.

1 Introduction

Let G = (V,E) be an undirected graph, where V is the set of vertices and E is the set of
edges. A stable set of G is a subset of V such that no two vertices of the subset are pairwise
adjacent. The Maximum Stable Set Problem (MSSP) is to find a stable set of maximum
cardinality in G. A clique is a subset of V such that all the vertices are pairwise adjacent.
The maximum clique problem (MCP) is to find a clique of maximum cardinality in G. A
vertex cover S is a subset of V such that every edge (i, j) ∈ E is incident to at least one vertex
in S. The minimum vertex cover problem (MVCP) is to find a vertex cover of minimum
cardinality in G. The complement of G = (V,E) is a graph Ḡ = (V, Ē) such that (i, j) ∈ Ē
if and only if (i, j) /∈ E. It is easily seen that S is a stable set of G if and only if S is a clique
of Ḡ and V \ S is a vertex cover of G; thus, the maximum clique problem, the vertex cover
problem, and the maximum stable set problem are equivalent.

We should distinguish a maximum stable set (clique) from a maximal stable set (clique).
A maximal stable set (clique) is a stable set (clique) that is not a subset of any other stable
set (clique). A maximum stable set (clique) is a maximal stable set (clique) that has the
maximum cardinality.

The MSSP is known to be NP-hard for arbitrary graphs, which means that unless
P = NP, there exists no algorithm that finds an optimal solution in polynomial time.
Furthermore, it can be shown that given an ε > 0, there exists no polynomial time algorithm
for approximating the maximum clique size within a factor of |V |ε under the assumption
that P �= NP [3].

In this paper, we present an approximate algorithm which is simple and reasonably
efficient. The organization of this paper is as follows. In Section 2, we describe the previous
work for the MSSP, the maximum clique problem, and the vertex covering problem. In
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Section 3, we briefly review the local and tabu search heuristics, and then introduce a
variant of tabu search, namely the life span method. In Section 4, we give an application of
the life span method to the MSSP. The results of the numerical experiments and parameter
optimization are shown in Section 5. The final section gives conclusions.

2 Previous Work

In this section, we review the previous work on the MSSP.

2.1 Complexity

As we have mentioned in Section 1, the maximum stable set (MSSP), the maximum clique
(MCP), and the minimum vertex cover (MVCP) problems are computationally equivalent
on arbitrary graphs. They are known to be NP-hard.

The new complexity class MAX SNP was introduced by Papadimitriou and Yannakakis
[32]. They showed that many problems are complete in this class, relative to a reducibility
that preserves the quality of approximation. The MAX 3-SAT problem and the vertex cover
problem are examples of such complete problems. In [5], Berman and Schnitger have shown
that if one of the MAX SNP problems does not have a polynomial time approximation
scheme, then there is an ε > 0 such that the maximum clique cannot be approximated in
polynomial time with performance ratio

size of maximum clique

size of approximate clique
= O(|V |ε).

A breakthrough in approximation complexity was made by the recent result of Arora et
al. [2, 3]. They showed that the maximum number of satisfiable clauses in a 3-SAT formula
(MAX 3-SAT) cannot be approximated to arbitrary small constants (unless P = NP), thus
resolving the open question in [32]. This immediately shows the hardness of finding good
approximate solutions to all the above listed problems. In particular, it is shown that no
polynomial time algorithm can approximate the maximum clique size within a factor of n ε

(ε > 0), unless P = NP (by using the results of Feige et al. [10]).

2.2 Heuristics

The majority of approximation algorithms in the literature for the MSSP, MCP and MCVP.
fall into the category known as sequential greedy heuristics. These heuristics repeatedly add
a vertex into a stable set, or delete of a vertex from a set that in not a stable set to generate
a maximal stable set.

Two classes of sequential greedy heuristics have been proposed by Kopf and Ruhe [26].
They are composed of the Best in and the Worst out heuristics. The heuristics decide
a vertex to be added in or moved out by referring certain indicators. For example, if the
indicator is the degree of a vertex, the Best in heuristic adds in a vertex that has the smallest
degree among all candidate vertices. The Worst out heuristic starts with an initial set V, and
repeatedly removes a vertex out of V until V becomes a stable set. All sequential heuristics
find only one maximal stable set. The algorithm stops when a maximal stable set is found.
We can view these types of heuristics from a different point. For example, Pardalos and Xue
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[33] define SG to be the space consisting of all maximal stable set of G. A sequential greedy
heuristic finds one point in SG.

Given an initial point x, what a local search heuristic does, is search its neighborhood
and selects the next point x′. One major class of local search heuristics in the literature
is the k-interchange heuristics. Given a feasible solution x of the MSSP, a k-interchange
neighbor Nk of x is defined by

Nk : x→ {y : y is a stable set , |x�y| ≤ k},
where x�y is the symmetric difference of x and y, i.e., x�y = (y\x)∪(x\y). Given a feasible
stable set x, a k-interchange heuristic searches all the k-neighbors of x and outputs the best
(largest) stable set found. It repeats this step until no improved solution can be found. The
performance of a local search heuristic depends on the initial solution and the definition of
the neighborhood. As the size of the neighborhood increases, the solution quality of a local
search improves, but the effort of computation increases rapidly.

A randomized heuristics runs a heuristic (with some random factors included) a number
of times to find different points over SG. For example, Feo et al. [11] proposed an elaborated
implementation of the randomized heuristic for the MSSP. Their computational results show
that their approach was effective in finding large stable sets on randomly generated graphs.

The simulated annealing algorithm, neural net approach, and tabu search have been
used to design heuristics for the MSSP. Aarts and Korst [1] presented an application of the
simulated annealing and neural net algorithms to the MSSP. Friden et al. [14] and Gendreau
et al. [16] implemented tabu search. Friden et al. used the fixed cardinality approach in
which the cardinality of the set S is temporally fixed and |E(S)| is maximized, where |E(S)|
is the set of edges whose endpoints are both in S. Their neighborhood is defined as follows.
Given a vertex set S(⊆ V ), a ‘swap’ neighborhood is defined as

Nswap : S → {S \ {x} ∪ {y} : x ∈ S, y ∈ V \ S}.
Gendreau et al. [16] maximized the objective function |C| + |A(C)| which is an upper

bound on the size of any clique containing C, where |A(C)| is the set of vertices that are
adjacent to all vertices in C. Ramanujam and Sadayappan [34] proposed a heuristic using
neural networks.

Another type of heuristics that finds a maximal clique of G is called the subgraph approach
[4]. It is based on the fact that a maximum clique C of a subgraph G′ ⊆ G is also a clique
of G. The subgraph approach first finds a subgraph G′ ⊆ G such that the maximum clique
of G′ can be found in polynomial time. Then it finds a maximum clique of G ′ and use it as
the approximation solution. The advantage of this approach is that in finding the maximum
clique C ⊆ G′, one has (implicitly) searched many other cliques of G ′ (SG′ ⊆ SG). Because
of the special structure of G′, this implicit search can be done efficiently.

For more information, we refer the readers to a comprehensive survey [33] which contains
more than 300 references.

3 Local Search, Tabu Search, and Life Span Method

In this section, we briefly describe local search and tabu search, and introduce a variant of
tabu search called the Life Span Method on which the algorithm that we will present is
based. We describe the outline of these algorithms in terms of the generic combinatorial
optimization problem.
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3.1 Combinatorial Optimization Problem

A general combinatorial optimization problem may be defined as follows.
LetB be a finite set called the ground set. The objective of the combinatorial optimization

problem is to find a minimum cost element in the set of feasible solutions X ⊆ 2B , i.e.,

min{c(x) : x ∈ X},
where c : X → � denotes a cost mapping.

For the MSSP, the ground set is V . Given a set of vertices S ⊆ V , we denote by E(S)
the set of edges whose endpoints are both in S. Then the set of feasible solutions X ⊆ 2V is
defined by

X = {S ⊆ V : |E(S)| = 0}. (1)

Since we want to maximize the cardinality of the stable set S, the cost mapping c is defined
by

c(S) = −|S|. (2)

Given a feasible solution x in a particular problem, we can define a set of solutions N(x)
that are ‘close’ to it in a sense. We call N(x) the neighborhood of x.

Given a combinatorial optimization problem, a mapping

N : X → 2X

is called the neighborhood.
For the MSSP, we introduce the set of pseudofeasible solutions X̃ which are the set of

infeasible solutions that are ‘close’ to the feasible solutions. We define the details of the
neighborhood for the MSSP in Section 4.2.

We want to find a global optimum, which is a solution with the minimum possible cost.
Finding a global optimum can be prohibitively difficult, but it is often possible to find a
solution x which is best in the sense that there is nothing better in its neighborhood N(x).
We call the solution in which none of its neighbors has a lower cost a local optimum.

3.2 Local Search

We first review local search to understand tabu search and the life span method. Given a
neighborhood N : X → 2X , the mapping improve used in local search is defined by

improve(x) =

{
any x′ ∈ N(x) with c(x′) < c(x) if such an x′ exists
∅ otherwise.

Using this mapping, a prototype of local search algorithm is described on Figure 1,
A good survey of local search procedures can be found in [31, § 18].
Although many variants of local search have been proposed, we adopt tabu search (or

steepest ascent mildest descent method) introduced by Glover [18, 19] and independently
by Hansen [21, 22] , as a basic ingredient for designing our algorithm. The reason is that
tabu search is simpler and more efficient than other metastrategies such as the simulated
annealing algorithm [1, 8, 36] and the genetic algorithm [20, 29].

4



procedure local search
1 x := some initial feasible solution
2 while improve(x) �= ∅ do
3 x := improve(x)
4 return x

Figure 1: Local Search.

3.3 Tabu Search

The main idea of tabu search is to use the best neighbor instead of an improved neighbor,
and to forbid some moves to avoid cycling. Here, a move is a pair of solutions (x, x′) such
that x ∈ X and x′ ∈ N(x). The set of solutions forbidden to be visited again is stored in the
so-called tabu list TL. The tabu search algorithm uses a mapping best which can be defined
by

best(x) =

{
x′ if c(x′) ≤ c(y) for all y ∈ N(x) \ TL
∅ if N(x) \ TL = ∅.

Using the above terminology, a prototype of tabu search can be described on Figure 2,

procedure tabu search
1 t := 0 /∗ t represents the number of iterations ∗/
2 x0 := some initial solution
3 TL := ∅ /∗ TL represents the tabu list ∗/
4 tabulength := a positive integer
5 while stopping-criterion �= yes do
6 xt+1 := best(xt)
7 TL := TL ∪ {xt} \ {xt−tabulength}
8 t := t+ 1
9 return x

Figure 2: Tabu Search.

3.4 Life Span Method

In some applications, it is very time-consuming to store the solutions in the tabu list; Glover
recommended the following approximation. An attribute is the ‘coding’ or ‘finger-print’
of move (x, x′) of solutions. More precisely, we assume that there exists a mapping ψ :
X × X → A, where A denotes the set of attributes. When a solution x is moved to the
new one x′ ∈ N(x), we store attribute ψ(x′, x) in the tabu list to avoid a move from x′ to x.
Then, move (x, x′) cannot be used if attribute ψ(x, x′) is in the tabu list. For more details,
see [18, 19].

The Life Span Method (LSM) is a variant of tabu search introduced by the authors in
order to overcome some drawbacks and vagueness of the original tabu search. The main
differences between the LSM and tabu search are
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1. the definition of attributes;

2. the representation of tabu list;

3. the permission of infeasible solutions;

4. the basic philosophy to avoid many ad hoc rules and parameters.

The LSM works on 2B instead of X, where B is the ground set. Solutions which are not
in the feasible solution set X are also allowed to be searched. Although some tabu search
algorithms in the literature have adopted such an infeasible solution approach, the LSM
treats the infeasibility of solutions in an explicit way. The definition of the attribute in
the original tabu search was rather vague and problem dependent. In the LSM, the set of
attributes A corresponds to 2B . Recall that X ⊆ 2B . Given two solutions x, x′ ∈ 2B , the
symmetric difference x�x ′ = (x′ \ x) ∪ (x \ x′) is also in 2B. Thus, the mapping ψ is simply
stated as

ψ(x, x′) = x�x′.
For each element β of B, we define the ‘Life Span’ of β as the remaining iterations that β
is forbidden, and denote it by LS(β). When a solution x is moved to a new one x′ ∈ N(x),
we set LS(β) to a positive integer tabulength for every β ∈ x�x ′. For every iteration, we
decrease LS(β) by one if LS(β) > 0. If LS(β) is positive, all moves (x, x ′) whose symmetric
differences contain β are forbidden.

As in tabu search, we move to the best neighbor. Since we allow visiting infeasible
solutions in the course of the algorithm, the neighborhood mapping N is defined as

N : X̃ → 2X̃ ,

where X̃ = 2B is the set of (feasible or infeasible) solutions and the mapping best in tabu
search is modified as

best(x) = arg min{c(y) : y ∈ N(x) such that LS(β) = 0 for all β ∈ x�y}.

Now a prototype of the LSM is described on Figure 3,

procedure life span method
1 x := some initial solution
2 LS(β) := 0 for all β ∈ B
3 tabulength := a positive integer
4 while stopping-criterion �= yes do
5 x′ := best(x)
6 LS(β) := tabulength for all β ∈ x�x ′

7 x := x′

8 LS(β) := LS(β) − 1 for all β ∈ B such that LS(β) > 0
9 return x

Figure 3: Life Span Method.

The LSM has the following merits.
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1. We can determine the attributes without any ambiguity.

2. Checking the tabu status can be done in O(1) time in the LSM, while the queue
implementation recommended by Glover [18, 19] requires O(tabulength) time to do
the same operation. Instead, the LSM requires an additional O(|B|) memory which
creates no problem in almost all applications.

3. The LSM has more flexibility. For example, we can randomize tabulength to diversify
the search.

4. Allowing infeasible solutions makes it possible to escape from local optima.

Not only are the mathematical definitions between tabu search and the LSM different,
but the fundamental philosophy is also different. The philosophy of tabu search is to collect
principles of intelligent problem solving [17]; so the parameters to control the algorithm may
be very large. Meanwhile, our philosophy is to keep the number of control parameters as
small as possible. The details of the LSM can be found in the companion paper [27].

4 The Life Span Method for the Maximum Stable Set

Problem

To design an efficient LSM tailored to the MSSP, we must determine several features of the
algorithm carefully. In this section, we describe the implementation details of our heuristic
algorithm for solving the MSSP. Note that we can easily construct an algorithm for the
maximum clique problem, the minimum vertex cover problem, and a weighted version of
these problems based on the algorithm presented below.

Our implementation is based on the Life Span Method (LSM) described in the previous
section. The LSM for MSSP has the following features:

1. The search space contains infeasible solutions.

2. The algorithm simultaneously maximizes two objective functions.

3. The algorithm has two independent neighborhoods.

4. Instead of using a queue structure ‘tabu list’, the algorithm uses the array that we call
‘life span’.

5. Long term memory (LTM) devices are used for diversifying the search.

To develop an LSM specially designed for the MSSP, the definition of the ground B is
needed at first. We adopt the following simple definition: the ground set B corresponds to
the set V of vertices.

4.1 Search Space

In this section, we describe the search space of the LSM. As we have mentioned in Section 1,
we expand the search space into the pseudofeasible solutions. If two vertex sets, S1 and S2,
satisfy |S1| = |S2| and |E(S1)| > |E(S2)|(recall that |E(S)| represents the number of edges
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whose endpoints are both in S) , we say that S2 is closer to the feasible solutions than S1.
Now the pseudofeasible solutions, those solutions that are ‘close’ to the feasible solutions.
The objective of the MSSP is to increase the cardinality of the set S and, simultaneously,
to minimize |E(S)|.

4.2 Neighborhood

The most important ingredient of the LSM is the definition of the neighborhood. We define
a ‘move’ neighborhood which consists of ‘add’ and ‘drop’ phases. Given a vertex set S(⊆ V ),
the add and drop neighborhoods are defined by

Nadd(S) = {S ∪ {y} : y ∈ V \ S} (3)

and

Ndrop(S) = {S \ {x} : x ∈ S}, (4)

respectively. If |E(S)| = 0, S is a feasible stable set, we use the add operation; otherwise,
we use the drop operation. Thus, we can increase the cardinality of S while keeping the
cardinality of E(S) to be small.

As in tabu search, our algorithm moves from a solution to the ‘best’ solution among its
neighborhoods, i.e., we select a neighbor which minimizes |E(S)|.

To compute the change in the cardinality of E(S) efficiently, we introduce an auxiliary
array δ. For each i ∈ V , δ(i) keeps the number of vertices j ∈ S adjacent to i, i.e.,∑

i∈S δ(i) = 2|E(S)|. The array δ can be updated in O(|V |) using the algorithm presented
Section 4.7.

4.3 Attributes and Life Span

To escape local optimal and to avoid searching the same solution repeatedly, we use the
notion called ‘life span’ which corresponds to the tabu list in tabu search. Instead of using
a queue implementation as in tabu search, we use a |V |-dimensional array LS. In this case,
the set of attributes A corresponds to the set of vertices V . For the add neighbor Nadd,
the symmetric difference x�x ′ of two solutions x and x′ ∈ Nadd(x) is the added vertex y in
(3). Similarly, for the drop neighbor Ndrop, the symmetric difference is the dropped vertex
x in (4). Associated with each vertex i ∈ V , we keep the life span LS(i) in which we store
a positive integer of the remaining iterations that vertex i is forbidden to be used. The
parameter tabulength decides a positive number (see the next section). In add (drop) phase,
we use the parameter tabulength1 (tabulength2). We decrease LS(i) by 1 for each iteration.
If LS(i) = 0, vertex i can be added or dropped. In add and drop phases, we select the vertex
i∗ as follows:

i∗ := arg min{δ(i) : i ∈ V \ S,LS(i) = 0} (5)

and

i∗ := arg max{δ(i) : i ∈ S,LS(i) = 0}. (6)

8



4.4 Randomization of tabulength

As we have mentioned in the previous section, tabulength is an important parameter of the
LSM. We adopt ‘randomization’ of tabulength. Instead of the deterministic tabulength, we
use an uniform random number in [1, tabulength].

4.5 Long Term Memory

We also use the long term memory [18] to avoid cycling. The long term memory is used to
diversify the search compelling regions that are not visited before. Note that a similar idea
was used in the classical local search literature [31].

When vertex i is added or dropped, we increase LTM(i) by 1. Values of the long term
memory never decreases while searching. Equations (5) and (6) for selecting the vertex i∗

are modified to incorporate the long term memory:

i∗ := arg min{δ(i) + α1 × LTM(i) / 1000 : i ∈ S \ V,LS(i) = 0},

i∗ := arg max{δ(i)− α2 × LTM(i) / 1000 : i ∈ S,LS(i) = 0},
where α1, α2 are parameters.

4.6 Termination Criteria

We define the termination criteria as follows. When the predetermined number of iterations
‘Stop Count’ throughout add and drop phase is exhausted without improving objective
function −|S|, the algorithm stops.

4.7 General Description of the Life Span Method

Now, we can describe the outline of the life span method for the MSSP in Figure 4
The computational requirement of the algorithm above is O(|V |) per iteration.

5 Experimental Analyses

In this section, we report the results of our computational experiments. All computational
experiments were executed on a Hitachi 3050 with 128MB memory and the algorithm
was coded in ANSI Standard C, using GNU C compiler. Running time were measured
by making the system call times and converting to seconds. Because it is important to
optimize the various parameters, preliminary experiments were performed to select the most
effective parameters for the LSM. Next, we compared the best solution and running time
with previous heuristics on random graphs and benchmark instances. Finally, to investigate
the average behavior, we performed 40 runs of the LSM on each problem and calculated the
sample mean, standard deviation, maximum and minimum of the solutions, and running
time.

5.1 The Test Beds

In this section, we introduce the test beds. These can be categorized into two classes.
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procedure outline of Life Span Method for MSSP
1 S = ∅
2 δ(i) = 0 for all i ∈ V
3 z := 0 /∗ z keeps |E(S)| ∗/
4 LS(i) := 0 for all i ∈ V
5 while terminate-criterion �= yes do
6 if z = 0 then /∗ add phase ∗/
7 i∗ := arg min{δ(i) + α1 × LTM(i)/1000 : i ∈ S \ V,LS(i) = 0}
8 S := S ∪ {i∗}
9 LS(i∗) := tabulength1

10 for all j adjacent to i∗

11 δ(j) := δ(j) + 1
12 if j ∈ S then z := z + 1
13 else /∗ drop phase ∗/
14 i∗ := arg max{δ(i)− α2 × LTM(i)/1000 : i ∈ S,LS(i) = 0}
15 S := S \ {i∗}
16 LS(i∗) := tabulength2
17 for all j adjacent to i∗

18 δ(j) := δ(j)− 1
19 if j ∈ S then z := z − 1
20 endif
21 for all i ∈ V
22 if LS(i) > 0 then LS(i) := LS(i) − 1

Figure 4: The LSM for the MSSP.

5.1.1 Random Graphs

The first class of graphs is the standard random graph G(n, p), defined in terms of two
parameters, n and p. The parameter n specifies the number of vertices in the graph; the
parameter p, 0 < p < 1, specifies the probability that any given pair of vertices constitutes
an edge. (We make the decision independently for each edge pair.) This family of graphs
has been studied extensively. Given parameters n and p, let Xk be a stochastic variable
denoting the number of stable sets of size k as follows:

Xk =

(
n
k

)
(1 − p)k(k−1)/2. (7)

If Zn,p denotes the maximum size of a clique in a random graph, then (see [6, 28]) for
the threshold function z(n, p) = 2 log1/(1−p) n− 2 log1/(1−p) log1/(1−p) n+ 2 log1/(1−p)(e/2) + 1
and any ε > 0, the following holds true:

lim
n→∞Prob{�z(n, p)� − 1 − ε ≤ Zn,p ≤ �z(n, p)� + ε} = 1.

5.1.2 DIMACS Benchmark Problems

The second class of graph is the DIMACS benchmark instances available in the anonymous
ftp site dimacs.rutgers.edu. They contain hamming, johnson, keller, c-fat graphs, etc.
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5.2 Parameter Optimization

In this section, we describe the experiments to optimize parameters. We do not claim
that our conclusions will be applicable to all LSM implementations, but we do believe that
they are applicable to the MSSP even if graphs are larger or different in character from
those we studied. As we have mentioned in Section 4, the LSM for the MSSP has five
parameters affecting the search behavior and the results. Since it is impossible to investigate
all possible combinations of parameter values, we studied just one or two parameters at a
time. We mainly show the results of the experiments performed on a benchmark instance
‘johnson12-4-5’, since this problem belongs to the medium class of difficulty in all problems.
Similar results were obtained for other DIMACS benchmark graphs as well as several random
graphs. Despite our limited experiments, they may be useful in suggesting what questions
to investigate in optimizing other LSM and tabu search implementations, and we have used
them as a guide in adapting the LSM to another combinatorial optimization problems.

A general strategy for parameter optimization is as follows: First, based on preliminary
experiments and also on logical considerations, it was observed that algorithm performance
depends more on tabulength than parameters for long term memory. Among tabulengths,
tabulength1 was found to give much greater effects than tabulength2, as will be confirmed
in the subsequent results. Based on the above observations, tabulength′s are first optimized.
When appropriate values of tabulengths are sought, the long term memory was not used.
More specifically, an appropriate value of tabulength1 is sought first with a fixed value of
tabulength2. Parameter tabulength2 is then optimized by fixing tabulength1 to the appro-
priate value of tabulength1. ‘Approximate’ values of parameters for the long term memory
would then be sought while fixing tabulengths to the identified appropriate values. After
appropriate values for these parameters were identified, tabulength1 is reoptimized since the
incorporation of the long term memory tends to reduce the proper value of tabulength.

The five parameters of the LSM for the MSSP� �

1. tabulength1 : the number of iterations during which movement of the vertex is
forbidden in the add phase, i.e., we set LS(i) when we add vertex i to S as
follows:
LS(i) := uniform integer random number in [1, tabulength1].

2. tabulength2 : the number of iterations during which movement of the vertex is
forbidden in the drop phase, i.e., we set LS(i) when we drop vertex i from S as
follows:
LS(i) := uniform integer random number in [1, tabulength2].

3. α1 : the bias of long term memory (see Section 4.5 for details).

δ(i)− α1 × LTM(i) / 1000.

4. α2 : the bias of long term memory (see Section 4.5 for details).

δ(i) + α2 × LTM(i) / 1000.

5. Stop Count : the number of iterations without improvement (see Section 4.6 for
details).

� �
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5.2.1 Optimization of tabulength1

First, let us examine the effect of varying the most important parameter, tabulength1. The
parameter tabulength1 has a greater effect than tabulength2 on the performance and the
time required in search, because the cardinality of V \ S is larger than that of S in most
graphs.

Figure 5 shows the relationship between tabulength1 and the best cost function value
obtained. In these runs, the other parameters (tabulength2, α1, α2, Stop Count) were set to
(3, 0, 0, 100000), i.e., in this case, we do not use the long term memory. We performed 10
runs from different initial solutions for each tabulength1 ≥ 1.

Table 1 shows the average size of the maximum stable sets and its variance by changing
tabulength1. Observe that there is a proper range of equivalently good values, and our
chosen value of tabulength1 = 35 falls within that range. Similar results were obtained for
other benchmark instances, as well as for several random graphs. For all graphs, large values
of tabulength1 lead to comparatively poor results. As this figure hints, the algorithm also
performs poorly for small values of tabulength1. For such tabulength1, the cycling occurs,
and the LSM cannot escape from a local optima. Note that the average size of the maximum
stable sets first increases, then decreases as tabulength1 increases. The same behavior occurs
for the other graphs we tested.
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Figure 5: The relationship between tabulength1 and the size of the maximum stable sets
on ‘johnson12-4-5’ while fixing the other parameters. (The tabulength1 increases along the
X-axis. The Y -axis measures the size of the maximum stable sets.)

5.2.2 Optimization of tabulength2

Similarly, in this section, we optimize tabulength2. As we have seen, the choice of tabulength1
has a direct effect on the performance and we select the value of tabulength1 = 35. In these
runs, the other parameters (tabulength1, α1, α2, Stop Count) were set to (35, 0, 0, 100000).

Figure 6 shows the relationship between tabulength2 and the best size of the maxi-
mum stable sets obtained. We performed 10 runs from different initial solutions for each
tabulength2. Because all the vertices i ∈ S are forbidden to be used, the LSM stops when
tabulength2 exceeds 70 on ‘johnson12-4-5’.

Table 2 shows the average size of the maximum stable sets and its variance by changing
tabulength2. The average size of the maximum stable sets increases until tabulength2 reaches
5 and then decreases. Based on the results, we recommend the value of tabulength2 = 5
that is in the middle of the proper range. But, when tabulength2 is between 7 and 42, the
size of maximum stable sets ranges frequently from 52 to 68. For that reason, we investigate
while changing tabulength1 and tabulength2 simultaneously.

Figure 7 shows the relationship between tabulength1, tabulength2 and the size of the
maximum stable sets obtained. We performed 10 runs from different initial solutions for
each tabulength1 and tabulength2. In this case, if both tabulength1 and tabulength2 are
too small, then the LSM don’t works very well without other strategies.
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Table 1: Average size of the maximum stable sets (Ave) and its variance (Var) by changing
tabulength1. Asterisk ∗ indicates the parameter which produces best results.

Range Ave Var Range Ave Var
1 − 10 65.0 79.2 151 − 160 78.3 0.5
11 − 20 70.7 128.3 161 − 170 78.1 0.4
21 − 30 75.8 88.3 171 − 180 78.3 0.5
31 − 40∗ 80.0 0.0 181 − 190 78.2 0.6
41 − 50 79.8 0.2 191 − 200 78.4 0.6
51 − 60 79.6 0.3 201 − 210 78.2 0.7
61 − 70 79.4 0.5 211 − 220 78.3 0.4
71 − 80 78.9 0.7 221 − 230 77.9 0.4
81 − 90 79.0 0.5 231 − 240 78.0 0.2
91 − 100 78.8 0.5 241 − 250 78.2 0.6
101 − 110 78.8 0.6 251 − 260 78.0 0.6
111 − 120 78.6 0.6 261 − 270 78.0 0.5
121 − 130 78.5 0.6 271 − 280 77.8 0.8
131 − 140 78.4 0.4 281 − 290 78.0 0.6
141 − 150 78.3 0.5 291 − 300 77.8 0.4
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Figure 6: The relationship between tabulength2 and the size of the maximum stable sets
on ‘johnson12-4-5’ while fixing the other parameters. (The tabulength2 increases along the
X-axis. The Y -axis measures the size of the maximum stable sets.)
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Table 2: Average size of the maximum stable sets (Ave) and its variance (Var) by changing
tabulength2.

Range Ave Var
1 − 10∗ 78.8 22.6
11 − 20 75.4 87.8
21 − 30 74.9 86.7
31 − 40 77.1 18.0
41 − 50 76.9 1.5
51 − 60 75.5 1.0
61 − 70 74.4 0.8
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Figure 7: The relationship between tabulength1, tabulength2 and the size of the maximum
stable sets on ‘johnson12-4-5’ while fixing the other parameters. (The tabulength1 and
tabulength2 increase along the X-axis and Y -axis. The Z-axis measures the size of the
maximum stable sets.)
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5.2.3 Optimization of α1

Other important parameters are α1 and α2, which together control the intensity of the long
term memory. The other parameters (tabulength1, tabulength2, α 2, Stop Count) were set to
(35, 5, 0, 100000), and 10 different runs were executed from different initial solutions.

Figure 8 shows the relationship between α1 and the best size of the maximum stable sets
obtained. Table 3 shows the results of the experiments. When α1 is between 1 and 10, the
average size of the maximum stable sets is larger than other range, but as α1 increases, the
average size of the maximum stable sets decreases. If α1 is set to 0, i.e., if we do not use the
long term memory, the average size of the maximum stable sets becomes larger.
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Figure 8: The relationship between α1 and the size of the maximum stable sets on ‘johnson12-
4-5’ while fixing the other parameters. (The α1 increases along the X-axis. The Y -axis
measures the size of the maximum stable sets.)

5.2.4 Optimization of α2

We also performed similar experiments for optimizing the parameter α2. The other parame-
ters (tabulength1, tabulength2, α1, Stop Count) were set to (35, 5, 0, 100000) and we executed
10 different runs from different initial solutions for each α2.

Figure 9 shows the relationship between α2 and the best size of the maximum stable sets
obtained. Table 4 shows the results of the experiments. As the parameter α2 increases, the
average size of the maximum stable sets decreases from left to right. We select the value of
α2 = 5 for this graph. Similarly, we investigate while changing α1 and α2 simultaneously.

Figure 10 shows the relationship between α1, α2 and the size of the maximum stable sets
obtained. We performed 10 runs from different initial solutions for each α1 and α2. The
LSM works very well have wide proper ranges of the parameters by using both α1 and α2

simultaneously.
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Table 3: Average size of the maximum stable sets (Ave) and its variance (Var) by changing
α1.

Range Ave Var Range Ave Var
0 60.8 94.2 151 − 160 78.3 0.5

1 − 10∗ 79.9 0.1 161 − 170 78.2 0.5
11 − 20 79.8 0.2 171 − 180 77.9 0.8
21 − 30 79.7 0.3 181 − 190 77.9 0.9
31 − 40 79.5 0.4 191 − 200 77.5 0.5
41 − 50 79.7 0.4 201 − 210 77.8 0.7
51 − 60 79.3 0.5 211 − 220 78.0 0.7
61 − 70 79.2 0.7 221 − 230 77.8 0.5
71 − 80 79.1 0.7 231 − 240 77.8 0.6
81 − 90 79.1 0.5 241 − 250 77.7 0.4
91 − 100 78.9 0.7 251 − 260 77.0 0.4
101 − 110 78.8 0.6 261 − 270 77.0 0.3
111 − 120 78.6 0.6 271 − 280 77.1 0.8
121 − 130 78.4 0.8 281 − 290 77.1 0.3
131 − 140 78.3 0.6 291 − 300 77.3 0.6
141 − 150 78.6 0.7 - - -

50

55

60

65

70

75

80

85

0 50 100 150 200 250 300

T
he

 s
iz

e 
of

 m
ax

im
um

 s
ta

bl
e 

se
ts

alpha2

Figure 9: The relationship between α2 and the size of the maximum stable sets on ‘johnson12-
4-5’ while fixing the other parameters. (The α2 increases along the X-axis. The Y -axis
measures the size of the maximum stable sets.)
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Table 4: Average size of the maximum stable sets (Ave) and its variance (Var) by changing
α2.

range Ave Var range Ave Cost Var
0 64.4 125.4 151 − 160 74.1 1.1

1 − 10∗ 77.9 0.8 161 − 170 74.2 1.0
11 − 20 77.3 0.8 171 − 180 73.4 1.1
21 − 30 76.6 0.7 181 − 190 72.2 1.7
31 − 40 76.3 0.7 191 − 200 73.2 0.9
41 − 50 76.3 0.7 201 − 210 73.7 1.9
51 − 60 76.0 0.8 211 − 220 73.2 2.4
61 − 70 75.7 0.9 221 − 230 73.2 0.8
71 − 80 75.6 0.9 231 − 240 73.7 0.9
81 − 90 75.4 0.7 241 − 250 72.2 0.9
91 − 100 75.2 0.6 251 − 260 72.4 1.5
101 − 110 75.0 0.9 261 − 270 72.3 1.4
111 − 120 75.0 0.9 271 − 280 72.3 1.5
121 − 130 74.7 0.9 281 − 290 72.7 2.7
131 − 140 74.6 0.9 291 − 300 72.0 1.7
141 − 150 74.7 1.1 - -
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Figure 10: The relationship between α1, α2 and the size of the maximum stable sets on
‘johnson12-4-5’ while fixing the other parameters. (The α1 and α2 increase along the X-axis
and Y -axis. The Z-axis measures the size of the maximum stable sets.)
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5.2.5 Optimization of Stop Count

The final parameter to be investigated is Stop Count, the number of iterations which controls
the termination-criterion (see Section 4.6). Note that preliminary experiments showed that
the total number of iterations before termination was proportional to parameter Stop Count.

Figure 11 shows the relationship between Stop Count and the best size of the maximum
stable sets obtained and Table 5 the results of the experiments. We performed 10 runs from
different initial solutions for each Stop Count. As the Stop Count increases, the average
size of the maximum stable sets increases.
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Figure 11: The relationship between Stop Count and size of the maximum stable sets on
‘johnson12-4-5’ while fixing the other parameters. (The Stop Count increases along the
X-axis. The Y -axis measures the size of the maximum stable sets.)

Table 5: Average size of the maximum stable sets (Ave) and its variance (Var) by changing
Stop Count.

Range Ave Var range Ave Var
1000 − 20000 78.5 0.9 101000 − 120000 79.8 0.2
21000 − 40000 79.4 0.6 121000 − 140000 79.9 0.1
41000 − 60000 79.5 0.5 141000 − 160000 79.9 0.1
61000 − 80000 79.7 0.2 161000 − 180000 79.9 0.1
81000 − 100000 79.7 0.2 181000 − 200000∗ 80.0 0.0
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5.2.6 Experiments Incorporating All Strategies

We perform the same experiments as in Section 5.2.1 by incorporating all the parameters op-
timized as above. We set (tabulength2, α1, α2, Stop Count) to (5, 5, 5, 200000) and executed
the algorithm from 10 different initial solutions for each tabulength1. Figure 12 illustrates
the relationship between tabulength1 and the best size of the maximum stable sets incor-
porating all the strategies. As can be seen from Figure 5, the LSM becomes more robust
by incorporating all strategies. Table 6 shows the results of the experiments. There is a
proper range (11 − 20) of good values, and our chosen value of tabulength = 35 does not
fall within that range, but is a good choice. Thus, so we get a proper parameter choice
(tabulength1, tabulength2, α1, α2, Stop Count) = (15, 5, 5, 5, 200000).
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Figure 12: The relationship between tabulength1 and the size of the maximum stable sets
incorporating all the strategies on ‘johnson12-4-5’ while fixing the other parameters. (The
tabulength1 increases along theX-axis. The Y -axis measures the size of the maximum stable
sets.)

5.2.7 Optimized Parameters on Benchmark Instances

Similar experiments of parameter optimization were also performed on all benchmark in-
stances. Tables 7 and 8 show the resultant optimized parameters. We select the proper
ranges which yield good solutions with low variances.
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Table 6: Average size of the maximum stable sets (Ave) and its variance (Var) by changing
tabulength1 incorporating all the strategies.

Range Ave Var Range Ave Var
3 − 10 79.7 0.4 151 − 160 78.0 0.4

11 − 20∗ 80.0 0.0 161 − 170 77.8 0.5
21 − 30 79.9 0.1 171 − 180 77.9 0.4
31 − 40 79.8 0.2 181 − 190 77.9 0.6
41 − 50 79.5 0.3 191 − 200 77.8 0.5
51 − 60 79.4 0.4 201 − 210 77.8 0.5
61 − 70 79.2 0.5 211 − 220 78.0 0.3
71 − 80 79.1 0.5 221 − 230 77.7 0.3
81 − 90 78.9 0.4 231 − 240 77.9 0.6
91 − 100 78.9 0.6 241 − 250 77.7 0.5
101 − 110 78.7 0.5 251 − 260 77.7 0.5
111 − 120 78.6 0.6 261 − 270 77.8 0.5
121 − 130 78.6 0.6 271 − 280 77.5 0.4
131 − 140 78.5 0.5 281 − 290 77.5 0.6
141 − 150 78.5 0.4 291 − 300 77.7 0.3

5.3 Numerical Experiments

In this section, we give the results of numerical experiments using parameters optimized
using the procedure similar to the ones given.

We first test our algorithm on random graphs. We select the model which consists of
graphs in which the edges are chosen independently with probability p (see [7, 30]). If we
define the density of a graph G as the number of edges of G = (V,E) over the number
of edges of the complete graph with |V | vertices, then for this class of random graphs the
density is very close to p.

5.3.1 Random Graphs

In this section, we give results of the experiments on randomly generated graphs. Here, the
LSM is run with the ‘optimized’ parameter values for random graphs obtained from a series
of experiments similar to the ones given in in Section 5.2. Specifically, parameters are set as
follows:

(tabulength1, tabulength2, α1, α2) = (10, 5, 10, 5).

The efficient heuristics known in the literature are tabu search algorithms due to Friden et
al. [13] and Gendreau et al. [16]. Feo et al. [11] proposed the greedy randomized adaptive
search procedure (GRASP) for the maximum stable set problem. Dmclique is a variant on
the simple ‘semi-exhaustive greedy’ scheme for finding large stable sets used in the graph
coloring algorithm XRLF described in Johnson et al. [24]. We compare the performance of
the LSM with their methods.

As mentioned in Section 5.1.1, random graphs have two parameters (n, p). If two graphs
have the same parameters, the probabilistic estimates of the maximum size of stable sets for
two graphs are identical. In these experiments, since we could not obtain the same graphs,
we generated the random graphs with the same parameters. Because the computational
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Table 7: The proper ranges and values of LSM parameters on benchmark instances (1).
file tabulength1 tabulength2 α1 α2

c-fat200-1.clq 11 − 20 1 − 10 10 5
c-fat200-2.clq 11 − 30 1 − 10 10 5
c-fat200-5.clq 11 − 40 1 − 10 10 5
c-fat500-1.clq 11 − 30 1 − 10 10 5
c-fat500-10.clq 11 − 40 1 − 10 10 5
c-fat500-2.clq 11 − 30 1 − 10 10 5
c-fat500-5.clq 11 − 50 1 − 10 10 5

johnson16-2-4.clq 11 − 100 1 − 10 10 5
johnson32-2-4.clq 11 − 100 1 − 10 10 5
johnson8-2-4.clq 11 − 100 1 − 10 10 5
johnson8-4-4.clq 11 − 100 1 − 10 10 5
johnson12-4-5.clq 11 − 20 11 − 20 20 15

keller4.clq 1 − 10 1 − 10 10 5
keller5.clq 1 − 10 1 − 10 10 5
keller6.clq 11 − 20 1 − 10 20 10
keller7.clq 21 − 30 11 − 20 20 10

hamming11-4.clq 1 − 10 1 − 10 10 5
hamming10-2.clq 1 − 10 1 − 10 10 5
hamming10-4.clq 1 − 10 1 − 10 10 5
hamming6-2.clq 1 − 10 1 − 10 10 5
hamming6-4.clq 11 − 20 1 − 10 10 5
hamming8-2.clq 11 − 20 1 − 10 10 5
hamming8-4.clq 11 − 20 1 − 10 10 5

san1000.clq 11 − 20 11 − 20 10 5
san200 0.7 1.clq 11 − 20 1 − 10 10 5
san200 0.7 2.clq 11 − 20 1 − 10 10 5
san200 0.9 1.clq 11 − 20 1 − 10 10 5
san200 0.9 2.clq 21 − 30 1 − 10 10 5
san200 0.9 3.clq 11 − 20 1 − 10 10 5
san400 0.5 1.clq 11 − 20 1 − 10 10 5
san400 0.7 1.clq 11 − 20 1 − 10 10 5
san400 0.7 2.clq 11 − 20 1 − 10 10 5
san400 0.7 3.clq 11 − 20 1 − 10 10 5
san400 0.9 1.clq 1 − 10 1 − 10 10 5
sanr200 0.7.clq 1 − 10 1 − 10 10 5
sanr200 0.9.clq 1 − 10 1 − 10 10 5
sanr400 0.5.clq 1 − 10 1 − 10 10 5
sanr400 0.7.clq 1 − 10 1 − 10 10 5
brock200 1.clq.b 1 − 10 1 − 10 10 5
brock200 2.clq.b 1 − 10 1 − 10 10 5
brock200 3.clq.b 1 − 10 1 − 10 10 5
brock200 4.clq.b 1 − 10 1 − 10 10 5
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Table 8: The proper ranges and values of LSM parameters on benchmark instances (2).
file tabulength1 tabulength2 α1 α2

brock400 1.clq.b 1 − 10 1 − 10 10 5
brock400 2.clq.b 1 − 10 1 − 10 10 5
brock400 3.clq.b 1 − 10 1 − 10 10 5
brock400 4.clq.b 1 − 10 1 − 10 10 5
brock800 1.clq.b 1 − 10 1 − 10 10 5
brock800 2.clq.b 1 − 10 1 − 10 10 5
brock800 3.clq.b 1 − 10 1 − 10 10 5
brock800 4.clq.b 1 − 10 1 − 10 10 5
p hat300-1.clq 1 − 10 1 − 10 10 5
p hat300-2.clq 1 − 10 1 − 10 10 5
p hat300-3.clq 1 − 10 1 − 10 10 5
p hat500-1.clq 1 − 10 1 − 10 10 5
p hat500-2.clq 1 − 10 1 − 10 10 5
p hat500-3.clq 1 − 10 1 − 10 10 5
p hat700-1.clq 1 − 10 1 − 10 10 5
p hat700-2.clq 1 − 10 1 − 10 10 5
p hat700-3.clq 1 − 10 1 − 10 10 5
p hat1000-1.clq 1 − 10 1 − 10 10 5
p hat1000-2.clq 1 − 10 1 − 10 10 5
p hat1000-3.clq 1 − 10 1 − 10 10 5
p hat1500-1.clq 1 − 10 1 − 10 10 5
p hat1500-2.clq 1 − 10 1 − 10 10 5
p hat1500-3.clq 1 − 10 1 − 10 10 5
MANN a27.clq 1 − 10 1 − 10 10 5
MANN a45.clq 11 − 20 1 − 10 10 5
MANN a81.clq 11 − 20 1 − 10 20 5
MANN a9.clq 1 − 10 1 − 10 10 5
C125.9.clq.b 1 − 10 1 − 10 10 5
C250.9.clq.b 1 − 10 1 − 10 10 5
C500.9.clq.b 1 − 10 1 − 10 10 5
C1000.9.clq.b 1 − 10 1 − 10 10 5
C2000.5.clq.b 11 − 20 1 − 10 10 5
C2000.9.clq.b 11 − 20 1 − 10 10 5
C4000.5.clq.b 11 − 20 1 − 10 10 5

DSJC500.5.clq.b 1 − 10 1 − 10 10 5
DSJ1000.5.clq.b 1 − 10 1 − 10 10 5

gen200 p0.9 44.clq.b 1 − 10 1 − 10 10 5
gen200 p0.9 55.clq.b 1 − 10 1 − 10 10 5
gen400 p0.9 55.clq.b 1 − 10 1 − 10 10 5
gen400 p0.9 65.clq.b 1 − 10 1 − 10 10 5
gen400 p0.9 75.clq.b 1 − 10 1 − 10 10 5
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Table 9: Results on random graphs with p = 0.5.

LSM Friden [13] Gendreau [16] Feo [11] Johnson [24]

graph : G(n, p) β̂ Ave Best Ave Best Ave Best Ave Best Ave Best
G(100, 0.5) 9 9 9 9 9 9 9 - - 8.6 9
G(300, 0.5) 12 12 12 12 12 11.5 12 - - 10.9 12
G(500, 0.5) 13 13 13 13 13 12.7 13 - - 11.8 13
G(1000, 0.5) 15 15 15 15 15 - - 15 15 13.0 15
G(1500, 0.5) 16 16 16 15.6 16 - - 15.9 16 13.7 15
G(2000, 0.5) 17 16.9 17 - - - - 16.8 17 14.1 16
G(4000, 0.5) 18 17.3 18 - - - - - - 15.1 16

Table 10: Average running times in seconds for random graphs with p = 0.5.
LSM Friden [13] Gendreau [16] Feo [11] Johnson [24]

4 graph : G(n, p) β̂ Sec. Sec. Sec. Sec. Sec.
G(100, 0.5) 9 0.001 1.2 20.0 - 0.001
G(300, 0.5) 12 0.6 62.0 30.0 - 0.05
G(500, 0.5) 13 1.3 50.0 50.0 - 0.11
G(1000, 0.5) 15 56.8 4247.0 - 241.37 0.48
G(1500, 0.5) 16 168.7 19009.0 - 2229.10 1.09
G(2000, 0.5) 17 1317.5 - - 6609.58 2.23
G(4000, 0.5) 18 3346.8 - - - 9.73

The computational environments
LSM Hitachi 3050
Friden VAX Station II/RC

Gendreau IBM PS/2 MODEL 70
Feo Alliant FX/80 parallel/vector computer

Johnson SGI Challenge

environments are different each other, running times are not directly comparable, and thus
we compare the best and average sizes of the maximum stable sets. We define β̂ to be the
probabilistic estimates. Table 9 shows the results of experiments on random graphs with
p = 0.5.

Table 10 show the average running times of random graphs. Friden et al.[13] sometimes
failed to obtain stable sets of size 16 on the instances with n = 1500. Our algorithm
consistently finds the solutions whose values are equal to the probabilistic estimates when
the size n is 1500 or less. Gendreau et al.[16] did not always obtain the stable sets of size 13
on the instances with n = 500. We see no major difference between the GRASP and the LSM
on random graphs, and the GRASP was competitive with the LSM. Although we consider
the computational environments, Dmclique was very fast, but the results for random graphs
were inferior to other algorithms.
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Table 11: Results on DIMACS BENCHMARKS (LSM).

Time(second) Solution
Name Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max

keller6.clq.b 8233.92 10054.19(167.33) 15522.75 57 58.95(0.32) 59
p hat1500-3.clq.b 2269.68 2292.84(15.72) 2358.50 94 94(0.00) 94
MANN a45.clq.b 1360.93 1541.29(318.34) 2448.55 342 342.61(0.66) 345

Table 12: Results on DIMACS BENCHMARKS (Solution).
Fleurent [12] Johnson [24]

Name Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max
keller6.clq.b 56 56.33(0.57) 57 42 48.84(1.91) 55

p hat1500-3.clq.b 93 93.66(0.57) 94 68 80.61(4.40) 91
MANN a45.clq.b 342 342(0) 342 339 341.47(0.75) 344

Table 13: The average behavior on DIMACS BENCHMARKS (Time).

Fleurent [12](minute) Johnson [24](second)
Name Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max

keller6.clq.b 1447.6m 3377.8m(2740.3) 6514.3m - 52.21(-) -
p hat1500-3.clq.b 37.6m 84.4m(44.9) 127.1m - 4.09(-) -
MANN a45.clq.b 382.7m 430.5m(47.83) 478.3m - 20.45(-) -

The computational environments
Fleurent SUN SPARC station 10(model 50)
Johnson SGI Challenge

5.3.2 Benchmark Instances

We also tested our algorithm on DIMACS test problems. Tables 11, 12 and 13 show the
results on the DIMACS test problems. Fleurent and Ferland [12] proposed the genetic hybrid
algorithms.

Though the test instances are originally for the maximum clique problem, we can obtain
the stable set instances by complementing the edges. First, we performed experiments for
renewing the best known solutions. Tables 14 and 15 show the results of experiments. Next,
we performed experiments to investigate the average behavior. Tables 16 and 17 show the
average behavior on benchmark problems. We performed 40 runs for all problems. The LSM
for the MSSP is superior to other heuristics for the DIMACS test problems.

Numerical experiments show that the LSM with optimized parameters attains or renews
the best known solutions. Moreover, the proposed LSM is found to be extremely stable in
the sense that the best solutions could be found with almost no variability for most instances.
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Table 14: Best results on DIMACS BENCHMARKS (1).
Problem Nodes Edges Opt. or Best LSM CPU time(sec.)

c-fat200-1.clq 200 1534 12 12 0.01
c-fat200-2.clq 200 3235 24 24 0.05
c-fat200-5.clq 200 8473 58 58 0.15
c-fat500-1.clq 500 4459 14 14 0.05
c-fat500-10.clq 500 46627 126 126 0.52
c-fat500-2.clq 500 9139 26 26 0.03
c-fat500-5.clq 500 23191 64 64 0.23

johnson16-2-4.clq 120 5460 8 8 0.02
johnson32-2-4.clq 496 107880 16 16 0.03
johnson8-2-4.clq 28 210 4 4 0.01
johnson8-4-4.clq 70 1855 14 14 0.01
johnson12-4-5.clq 792 299376 ≥ 80 80 190.20

keller4.clq 171 9435 11 11 0.07
keller5.clq 776 225990 27 27 17.27
keller6.clq 3361 4619898 ≥ 59 59 2113.20
keller7.clq 14190 174157599 ≥ 121 121 514331.72

hamming11-4.clq 2048 1859584 ≥ 72 72 40.07
hamming10-2.clq 1024 518656 512 512 7.37
hamming10-4.clq 1024 434176 ≥ 40 40 0.56
hamming6-2.clq 64 1824 32 32 0.03
hamming6-4.clq 64 704 4 4 0.01
hamming8-2.clq 256 31616 128 128 0.43
hamming8-4.clq 256 20864 16 16 0.01

san1000.clq 1000 250500 15 15 819.18
san200 0.7 1.clq 200 13930 30 30 5.45
san200 0.7 2.clq 200 13930 18 18 4.72
san200 0.9 1.clq 200 17910 70 70 0.28
san200 0.9 2.clq 200 17910 60 60 2.47
san200 0.9 3.clq 200 17910 44 44 1.53
san400 0.5 1.clq 400 39900 13 13 50.62
san400 0.7 1.clq 400 55860 40 40 57.15
san400 0.7 2.clq 400 55860 30 30 0.62
san400 0.7 3.clq 400 55860 22 22 6.52
san400 0.9 1.clq 400 71820 100 100 17.78
sanr200 0.7.clq 200 13868 18 18 0.12
sanr200 0.9.clq 200 17863 ≥ 42 42 1.50
sanr400 0.5.clq 400 39984 13 13 8.42
sanr400 0.7.clq 400 55869 ≥ 21 21 7.50
brock200 1.clq.b 200 14834 21 21 0.97
brock200 2.clq.b 200 9876 12 12 69.38
brock200 3.clq.b 200 12048 15 15 14.15
brock200 4.clq.b 200 13089 17 17 73.00
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Table 15: Best results on DIMACS BENCHMARKS (2).
Problem Nodes Edges Opt. or Best LSM CPU time(sec.)

brock400 1.clq.b 400 59723 27 27 5452.00
brock400 2.clq.b 400 59786 29 29 1453.88
brock400 3.clq.b 400 59681 31 31 670.53
brock400 4.clq.b 400 59765 33 33 296.82
brock800 1.clq.b 800 207505 23 23 1321790.63
brock800 2.clq.b 800 208166 24 24 12488.78
brock800 3.clq.b 800 207333 25 25 32217.07
brock800 4.clq.b 800 207643 26 26 20853.30
p hat300-1.clq 300 10933 8 8 0.12
p hat300-2.clq 300 21928 25 25 0.15
p hat300-3.clq 300 33390 36 36 6.01
p hat500-1.clq 500 31569 9 9 0.08
p hat500-2.clq 500 62946 36 36 0.37
p hat500-3.clq 500 93800 ≥ 49 50 26.65
p hat700-1.clq 700 60999 11 11 1.10
p hat700-2.clq 700 121728 44 44 2.68
p hat700-3.clq 700 183010 ≥ 62 62 0.77
p hat1000-1.clq 1000 122253 10 10 2.87
p hat1000-2.clq 1000 244799 ≥ 46 46 1.05
p hat1000-3.clq 1000 371746 ≥ 65 68 104.70
p hat1500-1.clq 1500 284923 12 12 261.93
p hat1500-2.clq 1500 568960 ≥ 64 65 1.18
p hat1500-3.clq 1500 847244 ≥ 91 94 97.63
MANN a27.clq 378 70551 126 126 0.90
MANN a45.clq 1035 533115 345 345 127.60
MANN a81.clq 3321 5506380 ≥ 1100 1098 60.95
MANN a9.clq 45 918 16 16 0.05
C125.9.clq.b 125 6963 34 34 1.48
C250.9.clq.b 250 27984 ≥ 44 44 3.68
C500.9.clq.b 500 112332 ≥ 57 57 12.85
C1000.9.clq.b 1000 450079 ≥ 68 68 56.87
C2000.5.clq.b 2000 999836 ≥ 16 16 39.84
C2000.9.clq.b 2000 1799532 ≥ 78 78 128.43
C4000.5.clq.b 4000 4000268 ≥ 18 18 356.32

DSJC500.5.clq.b 500 125248 13 13 2.45
DSJ1000.5.clq.b 1000 499652 15 15 13.43

gen200 p0.9 44.clq.b 200 17910 44 44 2.45
gen200 p0.9 55.clq.b 200 17910 55 55 2.58
gen400 p0.9 55.clq.b 400 71820 55 55 1.68
gen400 p0.9 65.clq.b 400 71820 65 65 2.46
gen400 p0.9 75.clq.b 400 71820 75 75 2.89
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Table 16: The average behavior on DIMACS BENCHMARKS (1).

Time Solution
Name Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max

c-fat200-1.clq.b 113.77 129.25(24.88) 216.53 12 12.00( 0.00) 12
c-fat200-2.clq.b 112.72 153.49(40.41) 248.35 22 23.65( 0.64) 24
c-fat200-5.clq.b 109.27 119.56(16.60) 165.00 58 58.00( 0.00) 58
c-fat500-1.clq.b 439.47 518.87(99.21) 1015.68 13 13.98( 0.15) 14
c-fat500-10.clq.b 423.80 492.49(81.21) 900.32 126 126.00( 0.00) 126
c-fat500-2.clq.b 438.82 492.36(73.19) 705.05 26 26.00( 0.00) 26
c-fat500-5.clq.b 433.15 566.86(134.39) 868.82 62 63.91( 0.36) 64

johnson16-2-4.clq.b 48.92 49.07( 0.20) 50.08 8 8.00( 0.00) 8
johnson32-2-4.clq.b 376.53 378.22( 1.17) 384.87 16 16.00( 0.00) 16
johnson8-2-4.clq.b 0.00 0.01( 0.01) 0.03 4 4.00( 0.00) 4
johnson8-4-4.clq.b 22.68 22.88( 0.16) 23.60 14 14.00( 0.00) 14
johnson12-4-5.clq.b 835.53 1003.73(167.33) 1681.62 80 80.00( 0.00) 80

keller4.clq.b 87.32 87.54( 0.32) 89.05 11 11.00( 0.00) 11
keller5.clq.b 822.47 834.45( 7.73) 853.45 27 27.00( 0.00) 27
keller6.clq.b 8233.92 10054.19(1745.84) 15522.75 57 58.95( 0.32) 59

hamming11-4.clq.b 3678.25 3757.40(43.62) 3888.05 72 72.00( 0.00) 72
hamming10-2.clq.b 1265.28 1274.66(14.27) 1341.32 512 512.00( 0.00) 512
hamming10-4.clq.b 1306.55 1331.58(23.71) 1406.28 40 40.00( 0.00) 40
hamming6-2.clq.b 20.12 20.20( 0.11) 20.77 32 32.00( 0.00) 32
hamming6-4.clq.b 0.00 0.01( 0.01) 0.03 4 4.00( 0.00) 4
hamming8-2.clq.b 143.73 144.25( 1.15) 150.58 128 128.00( 0.00) 128
hamming8-4.clq.b 148.00 148.62( 1.17) 154.58 16 16.00( 0.00) 16
san1000.clq.b 1274.27 1722.49(362.62) 2920.58 9 10.36( 1.56) 15

san200-0.7-1.clq.b 104.77 122.23(13.18) 175.23 30 30.00( 0.00) 30
san200-0.7-2.clq.b 100.65 114.27( 5.76) 136.80 15 17.93( 0.46) 18
san200-0.9-1.clq.b 100.37 103.66( 4.63) 118.53 70 70.00( 0.00) 70
san200-0.9-2.clq.b 100.52 103.06( 2.42) 109.20 60 60.00( 0.00) 60
san200-0.9-3.clq.b 100.88 102.64( 0.89) 105.03 44 44.00( 0.00) 44
san400-0.5-1.clq.b 316.18 411.99(74.09) 740.48 13 13.00( 0.00) 13
san400-0.7-1.clq.b 300.02 459.64(119.08) 762.45 21 26.00( 7.33) 40
san400-0.7-2.clq.b 278.67 342.10(63.38) 582.27 19 29.74( 1.68) 30
san400-0.7-3.clq.b 305.95 330.55(23.89) 395.95 22 22.00( 0.00) 22
san400-0.9-1.clq.b 290.45 349.66(28.62) 418.37 100 100.00( 0.00) 100
sanr200-0.7.clq.b 108.50 109.16( 0.87) 112.00 18 18.00( 0.00) 18
sanr200-0.9.clq.b 103.60 104.37( 0.61) 105.95 42 42.00( 0.00) 42
sanr400-0.5.clq.b 311.83 322.23( 9.67) 352.23 13 13.00( 0.00) 13
sanr400-0.7.clq.b 301.62 305.86( 3.77) 318.70 21 21.00( 0.00) 21
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Table 17: The average behavior on DIMACS BENCHMARKS (2).

Time Solution
Name Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max

brock200-1.clq.b 106.78 112.34( 4.75) 122.93 21 21.00( 0.00) 21
brock200-2.clq.b 105.62 137.40(29.60) 206.05 11 11.88( 0.33) 12
brock200-3.clq.b 103.08 132.77(29.93) 209.73 14 14.98( 0.15) 15
brock200-4.clq.b 101.73 126.24(24.33) 200.87 16 16.66( 0.47) 17
brock400-1.clq.b 300.35 321.76(22.07) 393.97 25 25.00( 0.00) 27
brock400-2.clq.b 301.23 337.20(62.10) 604.48 25 25.39( 1.19) 29
brock400-3.clq.b 300.62 379.91(81.27) 586.42 25 27.78( 2.99) 31
brock400-4.clq.b 282.48 370.73(76.64) 594.23 25 30.27( 3.79) 33
brock800-1.clq.b 878.97 1074.69(169.47) 1486.08 21 21.00( 0.00) 23
brock800-2.clq.b 876.07 1087.99(190.96) 1644.98 20 20.95( 0.22) 24
brock800-3.clq.b 902.73 1248.60(233.98) 1956.47 21 21.80( 0.40) 25
brock800-4.clq.b 884.10 1136.56(188.47) 1746.52 20 20.98( 0.15) 26
p-hat300-1.clq.b 203.88 205.13( 1.18) 210.32 8 8.00( 0.00) 8
p-hat300-2.clq.b 187.92 188.85( 0.99) 192.65 25 25.00( 0.00) 25
p-hat300-3.clq.b 186.30 187.37( 1.15) 191.15 36 36.00( 0.00) 36
p-hat500-1.clq.b 434.33 437.68( 2.70) 450.17 9 9.00( 0.00) 9
p-hat500-2.clq.b 397.82 401.02( 2.24) 408.07 36 36.00( 0.00) 36
p-hat500-3.clq.b 393.23 396.72( 3.33) 410.13 50 50.00( 0.00) 50
p-hat700-1.clq.b 729.72 737.33( 7.42) 757.27 11 11.00( 0.00) 11
p-hat700-2.clq.b 660.47 665.52( 4.61) 683.20 44 44.00( 0.00) 44
p-hat700-3.clq.b 650.87 655.35( 4.26) 669.58 62 62.00( 0.00) 62
p-hat1000-1.clq.b 1363.87 1381.12( 9.66) 1412.65 10 10.00( 0.00) 10
p-hat1000-2.clq.b 1254.48 1269.52(11.12) 1308.82 46 46.00( 0.00) 46
p-hat1000-3.clq.b 1235.42 1247.35( 7.99) 1272.67 68 68.00( 0.00) 68
p-hat1500-1.clq.b 2552.52 3118.76(523.78) 4646.03 11 11.85( 0.35) 12
p-hat1500-2.clq.b 2306.40 2326.36(19.36) 2413.38 65 65.00( 0.00) 65
p-hat1500-3.clq.b 2269.68 2292.84(15.72) 2358.50 94 94.00( 0.00) 94
MANN-a27.clq.b 267.02 292.12(36.99) 404.22 126 126.00( 0.00) 126
MANN-a45.clq.b 1360.93 1541.29(318.34) 2448.55 342 342.61( 0.66) 345
MANN-a81.clq.b 7896.23 8658.61(850.55) 11323.15 1096 1097.08( 0.50) 1098
MANN-a9.clq.b 12.88 12.92( 0.04) 13.05 16 16.00( 0.00) 16
C125.9.clq.b 52.27 52.66( 0.26) 54.02 34 34.00( 0.00) 34
C250.9.clq.b 145.27 146.20( 0.85) 148.85 44 44.00( 0.00) 44
C500.9.clq.b 413.77 534.32(107.12) 793.52 56 56.88( 0.33) 57
C1000.9.clq.b 1310.42 1821.55(448.81) 2900.17 66 67.22( 0.61) 68
C2000.5.clq.b 3875.17 4317.47(505.22) 5999.18 16 16.00( 0.00) 16
C2000.9.clq.b 3689.77 5300.32(1387.07) 8638.13 75 75.68( 0.61) 78
C4000.5.clq.b 11396.42 13346.77(2753.41) 23336.52 17 17.25( 0.43) 18

DSJC500.5.clq.b 434.50 438.55( 3.58) 450.17 13 13.00( 0.00) 13
DSJC1000.5.clq.b 1368.27 1530.76(159.08) 2085.47 15 15.00( 0.00) 15

gen200-p0.9-44.clq.b 102.87 103.46( 0.47) 104.98 44 44.00( 0.00) 44
gen200-p0.9-55.clq.b 97.55 99.40( 1.26) 104.22 55 55.00( 0.00) 55
gen400-p0.9-55.clq.b 288.32 301.58(12.91) 343.25 55 55.00( 0.00) 55
gen400-p0.9-65.clq.b 274.45 278.44( 2.00) 284.90 65 65.00( 0.00) 65
gen400-p0.9-75.clq.b 275.75 279.25( 1.74) 284.85 75 75.00( 0.00) 75
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6 Conclusions

We presented a simple and efficient heuristic algorithm for the maximum stable set problem.
The presented algorithm is based on a variant of tabu search that we call the Life Span
Method (LSM).

As can be seen from the extensive experiments described in Section 5, the LSM seems to
be one of the best approaches to the maximum stable set problem. On random graphs, the
LSM dominates some previous heuristics such as Friden’s tabu search [13], Gendreau’s tabu
search [16] and Feo’s GRASP [11]. Numerical experiments on benchmark instances showed
that the proposed algorithm is not only fast but also robust enough; it always generates the
solutions whose values are equal to the probabilistic estimates or the best known values.

Furthermore, the extensive experimental analysis gives us an insight for a good choice of
parameters.

The Long Term Memory techniques reduce the proper range of tabulength from (30,40)
to (10,20) on ‘johnson12-4-5’ and similar phenomena were observed such as graph coloring
problem, quadratic assignment problem, graph partitioning problem and so on. For all test
problems, there are wide proper ranges of parameters. This indicates that the proposed
algorithm is robust and we can easily find good parameters via test runs for new data
sets. The recommendation values of parameter tabulength are in the range [10, 20] for many
test problems; but the other settings may not deteriorate the performance of the LSM.
Similarly, the parameter α that controls the long term memory has a broad proper range;
the recommended values are in the range [1, 10], but, again, the other settings would suffice.
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