Experimental Analyses of the Life Span Method for the
Quadratic Assignment Problem

Katsuki FUJISAWA
Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
Oh-Okayama, Meguro-ku, Tokyo, Japan
Mikio KUBO
Department of Information Engineering and Logistics,
Tokyo University of Mercantile Marine,
Etsujima, Koutou-ku, Tokyo, Japan

Abstract

In this paper, we report an application of the life span method (LSM), a variant of
tabu search introduced by the authors, to the quadratic assignment problem which has
applications on facility location and backboard wiring, etc. We discuss how to adapt
the LSM to the quadratic assignment problem and compare the performance with
previous heuristics. The main purpose of this paper is to perform experimental analyses
composed of optimizing the various parameters and to estimate the performance not
only in the best case but the average behavior.

Key words: life span method, tabu search, combinatorial optimization, approximate
algorithms, experimental analysis, quadratic assignment problem.

1 Introduction

The Quadratic Assignment Problem (QAP) is a combinatorial optimization problem having
many applications including facility location, ordering of data on a disk, backboard wiring,
machine scheduling, analyzing chemical, the location of departments (or offices), etc. [9].

In the context of facility location, a set of n facilities is to be assigned to an equal number
of locations. The QAP is defined as follows:

Definition 1 (Quadratic Assignment Problem: QAP)
Given a set V = {1,---,n} and n x n symmetric matrices F' = (f;;) and D = (di), find a
permutation 7 : V' — {1,---,n} which minimizes the cost function

o(m) =Y Z fiiniym(s)-

i

This problem has the following interpretation. A permutation 7 is the assignment of n
objects (facilities) to n locations. The value f;; is the flow between objects i and j, and dy
is the distance between locations k and ¢. When object i is assigned to location k and object
J is assigned to location ¢, the cumulative distance f;;dg, is incurred. The objective of the
QAP is to find an assignment which minimizes the cumulative distances between all pairs of
objects.

The QAP is known to be one of the hardest problems in N’P-hard problems because
there are many local optimal solutions that are very near to the global optima.

Using the 0-1 variable x;; which is set to 1 if object ¢ is assigned to location j, the QAP
is stated as the following quadratic integer programming problem:

min ZZZZﬁjdkwikxﬂ (1)
i 5 k!

subject to
inj =1 1 € V, (2)
J
J
33'1]6{0,1} 1eV,jeV. (4)

The set of feasible solutions corresponds to the set of n x n permutation matrices (z;;),
where x;; is equaled to 1 if m(i) = k. Many classical combinatorial problems, such as the
traveling salesman problem and the graph partitioning problem, are special cases of the
QAP.

In this paper, we estimate the performance of the life span method (LSM) with extensive
numerical experiments which have been carried out on the QAP.

The organization of this paper is as follows: In Section 2, we describe the pervious work
for the QAP. In Section 3, we briefly review the LSM, a variant tabu search introduced by
the authors [21]. In Section 4, we give an application of the LSM to the QAP. The results
of the numerical experiments and parameter optimization are shown in Section 5. The final
section gives conclusions.

2 Pervious Work

In this section, we briefly review the previous work on exact and approximation approaches
to the QAP, and the benchmark problems for the QAP.

2.1 Exact algorithms

Because the QAP is especially intractable in NP-hard problems, exact solution approaches
have been limited to small (n < 20) problems, and most of them are based on the branch
and bound method. The lower bounds for the QAP tend to deteriorate quickly, as the size
of the QAP increases.

The lower bound algorithms for the QAP can be categorized into four groups. The first
group of bounds is the Gilmore-Lawler lower bound [12, 22] and related bounds. Eigenvalue-
based approaches [9] constitute the second category. The third group of bounds is mainly
based on reformulations of the QAP [8, 11, 20]. The forth group is based on the semidefinite
relaxations [30].

2.2 Approximate algorithms

Several metastrategies have been applied to find approximate solutions to the QAP.

Wilhelm and Ward [31], Connolly [5] and Burkard and Rendl [3] proposed several varia-
tions of simulated annealing for the QAP. Taillard [28] applied tabu search to the QAP. He
used the dynamic tabu list of varying tabu list size randomly in the problem-dependent inter-
val and developed a parallel implementation on a ring 10 transputers. Skorin-Kapov [26, 27]
also applied tabu search to the QAP. Chakrapani and Skorin-Kapov [6] compared tabu search
with simulated annealing and neural net approaches. Chakrapani and Skorin-Kapov [7] de-
veloped a massively parallel implementation of tabu search, called Augmented Par tabu on
the Connection Machine CM-2. Their implementation used n? processors. Their algorithm
includes dynamic tabu list, aspiration criterion, and long term memory to escape a local
optimum. Fleurent and Ferland [10] proposed the genetic hybrid algorithm. Li et al. [23]
proposed a greedy randomized adaptive search procedure (GRASP) for the QAP.

2.3 QAPLIB — A Quadratic Assignment Problem Library

QAPLIB (a Quadratic Assignment Problem LIBrary) is a collection of problem instances
for the QAP of size n > 8 [2]. Some of these problems are generated by various researchers
for their own testing purposes. QAPLIB is composed of the test problems, the best known
or optimal solutions, and the best upper and lower bounds . QAPLIB is available via
anonymous ftp at ftp.tu-graz.ac.at in the directory /pub/papers/qaplib.

3 Local Search, Tabu Search, and Life Span Method

In this section, we briefly describe local search and tabu search, and introduce a variant of
tabu search called the Life Span Method on which the algorithm that we will present is
based. We describe the outline of these algorithms in terms of the generic combinatorial
optimization problem.

3.1 Combinatorial Optimization Problem

A generic combinatorial optimization problem is defined as follows [25].
Let B be a finite set called the ground set. The objective of the combinatorial optimization
problem is to find a minimum cost element in the set of feasible solutions X C 25 i.e.,

min{c(z) : x € X},

where ¢ : X — R denotes a cost mapping.

Given a feasible solution z in a particular problem, we can define a set of solutions N (z)
that are “close” to it in a sense. We call N(x) the neighborhood of .

Given a combinatorial optimization problem, a mapping

N:X — 2%

is called the neighborhood.

We want to find a global optimum, which is a solution with the minimum possible cost.
Finding a global optimum can be prohibitively difficult, but it is often possible to find a
solution = which is best in the sense that there is nothing better in its neighborhood N(z).
We call the solution in which none of its neighbors has a lower cost a local optimum.

3.2 Local Search

We first review local search to understand tabu search and the life span method. Given a
neighborhood N : X — 2% the mapping improve used in local search is defined by

: any ¢’ € N(z) with ¢(2') < ¢(x) if such an 2’ exists
improve(z) = 0 otherwise.

Using this mapping, a prototype of local search algorithm is described as follows.

procedure local search
1 z := some initial feasible solution
2 while improve(z) # 0 do
3 x :=improve(x)
4 return z

Figure 1: Local Search.

A good survey of local search procedures can be found in [25, § 18].

Although many variants of local search have been proposed, we adopt tabu search (or
steepest ascent mildest descent method) introduced by Glover [13, 14] and independently
by Hansen [17, 18] , as a basic ingredient for designing our algorithm. The reason is that
tabu search is simpler and more efficient than other metastrategies such as the simulated
annealing algorithm [1, 4, 29] and the genetic algorithm [16, 24].

3.3 Tabu Search

The main idea of tabu search is to use the best neighbor instead of an improved neighbor,
and to forbid some moves to avoid cycling. Here, a move is a pair of solutions (z,2’) such
that € X and 2/ € N(x). The set of solutions forbidden to be visited again is stored in the
so-called tabu list T'L. The tabu search algorithm uses a mapping best which can be defined
by

2t ife(a) <e(y) forally € N(z) \TL
b”t(”_{@ £ N@NTL =0

Using the above terminology, a prototype of tabu search can be described as follows:

procedure tabu search
1 t:=0 /*trepresents the number of iterations */
o := some initial solution
TL:=0 |/« TL represents the tabu list /
tabulength := a positive integer
while stopping-criterion # yes do
T1 = best(xy)
TL:=TLU {];t} \ {xt—tabulength}
t:=t+1
return z

O 00 O UL i W N

Figure 2: Tabu Search.

3.4 Life Span Method

In some applications, it is very time-consuming to store the solutions in the tabu list; so
Glover recommended the following approximation. An attribute is the ‘coding’ or ‘finger-
print” of move (z,z’) of solutions. More precisely, we assume that there exists a mapping
¥ : X x X — A where A denotes the set of attributes. When a solution z is moved to the
new one 2’ € N(z), we store attribute ¢(z’,) in the tabu list to avoid a move from 2z’ to .
Then, move (x,z’) cannot be used if attribute ¢ (z, x’) is in the tabu list. For more details,
see [13, 14].

The Life Span Method (LSM) is a variant of tabu search introduced by the authors in
order to overcome some drawbacks and vagueness of the original tabu search. The main
differences between the LSM and tabu search are

1. the definition of attributes;
2. the representation of tabu list;

3. the permission of infeasible solutions;

4. the basic philosophy to avoid many ad hoc rules and parameters.

The LSM works on 27 instead of X, where B is the ground set. Solutions which are not
in the feasible solution set X are also allowed to be searched. Although some tabu search
algorithms in the literature have adopted such an infeasible solution approach, the LSM
treats the infeasibility of solutions in an explicit way. The definition of the attribute in
the original tabu search was rather vague and problem dependent. In the LSM, the set of
attributes A corresponds to 28. Recall that X C 28. Given two solutions z,2’ € 25, the
symmetric difference Az’ = (z/ \ x) U (z \ 2’) is also in 25. Thus, the mapping 1 is simply
stated as
U(z,2') =z

For each element 3 of B, we define the ‘Life Span’ of 3 as the remaining iterations that
is forbidden, and denote it by LS(3). When a solution z is moved to a new one z’ € N(z),
we set LS(f) to a positive integer tabulength for every § € z/Az’. For every iteration, we
decrease LS(f) by one if LS(3) > 0. If LS(/3) is positive, all moves (z,2’) whose symmetric
differences contain (3 are forbidden.

As in tabu search, we move to the best neighbor. Since we allow visiting infeasible
solutions in the course of the algorithm, the neighborhood mapping N is defined as

N:X—>2X,

where X = 28 is the set of (feasible or infeasible) solutions and the mapping best in tabu
search is modified as

best(x) = argmin{c(y) : y € N(z) such that LS(8) =0 for all 5 € zAy}.

Now a prototype of the LSM is described as follows.

procedure life span method
1 z := some initial solution

2 LS(B):=0forall e B

3 tabulength := a positive integer

4 while stopping-criterion # yes do

5 x' = best(x)

6 LS(() := tabulength for all 5 € xAx’

7 x:=2a

8 LS(B) := LS(B) — 1 for all § € B such that LS(3) > 0
9 return x

Figure 3: Life Span Method.

The LSM has the following merits.

1. We can determine the attributes without any ambiguity.

2. Checking the tabu status can be done in O(1) time in the LSM, while the queue
implementation recommended by Glover [13, 14] requires O(tabulength) time to do
the same operation. Instead, the LSM requires an additional O(|B|) memory which
creates no problem in almost all applications.

3. The LSM has more flexibility. For example, we can randomize tabulength to diversify
the search.

4. Allowing infeasible solutions makes it possible to escape from local optima.

Not only are the mathematical definitions between tabu search and the LSM different,
but the fundamental philosophy is also different. The philosophy of tabu search is to collect
principles of intelligent problem solving [15]; so the parameters to control the algorithm may
be very large. Meanwhile, our philosophy is to keep the number of control parameters as
small as possible. The details of the LSM can be found in the companion paper [21].

4 Life Span Method for the Quadratic Assignment Prob-
lem

In this section, we explain the LSM for the QAP.

4.1 Neighborhood
By denoting the set of all permutation by II, we can define the neighborhood as follows,

Definition 2 (2-opt neighborhood for QAP)
Given a permutation 7, a 2-opt neighbor N is defined by

No(m) ={n" el :7'(i) =n(j),7'(j) = w(i), 7" (k) = w(k)(k #i,7) for all i,j € V,i# j}.

Chakrapani and Skorin-Kapov [7], Taillard [28], and many other researchers used the
2-opt neighborhood.

Definition 3 (3-opt neighborhood for QAP)
Given a permutation 7, a 3-opt neighbor N is defined by

N3(m) ={r" € 1. (i) = n(j),7'(j) = w(k), ' (k) = 7 (i), ' (¢) = m(C)
(0 #£1i,5,k) for all i,j,k € Vi#j # k}.

4.2 Attribute Set and Life Span

In usual tabu search implementations, the attribute set should be determined by considering
the structure of the problem to be solved. In the LSM, the attribute set is determined
without any ambiguity; the attribute set is defined on the ground set. The ground set B of
the QAP corresponds to the Cartesian product the set of objects (facilities) and the set of

locations, i.e., B =V x V. Recall that we used the 0 — 1 variable z;; which is set to 1’s if
object 7 is assigned to location j in our ‘natural’ formulation of the QAP Thus, an element
of the ground set of the QAP is the pair of an object and its location. An attribute mapping
1) corresponds to the symmetric difference of two permutations.

The set X of feasible solutions is the set of permutation matrices which is a subset of 25,
i.e., X C2V*V. We denote the permutation matrix (n x n square 0 — 1 matrix whose row and
column sums are all 1’s) associated with permutation 7 by M,. Given two permutations 7
and 7', we define a set M (7w \ 7’) as follows: (i,j) € M(w\7’) if and only if M, (i, j) = 1 and
M, (i,7) = 0. The symmetric difference of two permutations 7 and 7’ is M (7 \ 7")UM (7' \).

When we move from 7 to 7/, we set LS(i,k) to a positive integer, tabulength, for all
(i,k) € M(m\ '), and tabulength’, for all (i,k) € M(x’\ 7). The life span LS is reduced
by 1 for each iteration, and object i is prohibited to move to location k again while LS(i, k)
is positive. In our implementation, we always set tabulength’ = 0 to simplify the parameter
tuning. In the sequel, we call our attribute the object-location attribute.

The previous implementation of tabu search [6, 7, 26, 27, 28] adopted the set of pairs
of two objects 7,7 as an element of the attribute set. We henceforth call this attribute the
object pair attribute. For the 2-opt move that swaps the positions of two objects ¢ and 7,
we set LS(i,7) to a positive integer, tabulength. For the 3-opt move that exchanges the
positions of three objects ¢, j and k, we set LS(i,7) = LS(j, k) = LS(k,1) to tabulength.

We will compare these two attributes (the object-facility attribute and the object pair
attribute) in Section 5.2.4). The experimental results will show the advantage of our attribute
selection.

4.3 Calculation of the Difference in Costs

Here, we consider an efficient procedure to compute the difference ¢(n’) — ¢(7) in costs.
We first consider the 2-opt neighborhood. The difference A;; when we swap two objects
i and j can be computed as follows [5]:

= (fit = fir) [dn(iyriry — dr(iyntiy)-

k

Using this formula, a straightforward implementation of the LSM requires O(n?) time
per iteration. If we choose the best element among O(n?) candidate pairs of two objects,
the average (amortized) computational requirements can be reduced to O(1) per pair. This
can be done using the additional O(n?) memory requirements. We first rewrite the A;; as
follows:

Ay = > (fir = Jie)(drtiyete) = dri)mi))

k

= Z(fjkd (3)m (k) fjkdﬂ'(j)ﬂ'(k‘) + fikdﬂ(j)w fzkd (3)m (k))
k

If we store the value 0;, = >, fikdpr(x) for every ¢ and p which represents the difference in
cost when object i is moved to the location p, A;; can be computed in O(1) time as follows:

Ayj = 0jni) = Ojn(s) T Oin(j) = Oin(i) + 2fijdn(iyn()- (5)

Initially, we calculate all §’s in O(n?) time. If two objects a and b swap their positions, the
value 0;;, is recomputed as follows:

5ip = 5ip + (fzb fm)(w(i)m(a) — dw(i)w(b))-

Since each updating can be done in O(1) time, and the number of updates is O(n?), we can
update the array ¢ in O(n?) time. Finding the minimum of A;; can be done in O(n?) time; so
one iteration of the LSM is O(n?), which is an O(n) refinement of the naive implementation.
This technique was used in Skorin-Kapov’s tabu search [26].

We extend this technique to the 3-opt neighborhood. We can compute the difference
Ayjp, in costs when we swap three objects 4, j, h using the following formula:

Aijh = Oin(j) — Oir +5a7r<h> 0j(j) + Ohn(i) — Ohn(h)
+fin(dr(i)m(iy = dr(iyn(n))
+fjildrnyn(i) — dr(iye(i))
+fnj (dr(iym(n) — dr(iym(s))
+fw (D) (4) +fjhd ()7 (h)+flhd (i)m(h)- (6)

If three objects a,b, and c swap their positions, the value d;, is recomputed as follows:

5ip = 5ip + (fzb fw)(w(i)m(c) — d7r (2)m(b)) (fzc fm)(w(i)m(a) — dﬂ'(’L)Tl’(b))

Thus, we can find the best move in the 3-opt neighborhood in O(n?) time.

4.4 Long Term Memory

We also use the long term memory [13] to avoid cycling. The long term memory is used
to diversify the search compelling regions that are not visited before. Note that the similar
idea was used in the classical local search literature [25].

We use a pair of object ¢ and location k for the long term memory LT M as in the life
span LS. When object ¢ is moved from location k, we increase LT'M (i, k) by 1.

A diversification factor o x LT M (i, k)/100 is added to the objective function ¢(7), i.e.,
when we change permutation 7 to permutation 7', we use the perturbated objective function
¢(r') defined as

() =)+ Y LTMG,k). (1)
(i,k)eM(m\7!)

For the 2-opt neighborhood, the difference A’(3, j) of two function values é(7') and é()
becomes as follows:

A'(i,7) = A, §) + a x (LTM (i, 7(j)) + LTM(j, 7(i))/100

In the 3-opt neighborhood, we do not use the long term memory to simplify the imple-
mentation and the parameter settings.

4.5 Life Span Clear Strategy

To intensify the search, we periodically clear the tabu status (life span). We call this strategy
the life span clear and abbreviate it LSC in the sequel. The LSC strategy is executed in
the following way. If the number of iterations exceeds the predetermined value Clear Count
without improving the best value obtained so far, we continue the search from the current
solution after setting life span LS(i, k) to 0 for all 4,k in V.

4.6 Change and Termination Criterion

We use two neighborhoods, 2-opt and 3-opt, as follows. We first use the 2-opt neighborhood.
When the predetermined number of LSC’s C'hange23_Count is exhausted without improving
the objective function value, we restart the search from the ‘best’ solution using both the
2-opt and 3-opt neighborhoods.

Similarly, we restart the search from the ‘current’ solution with the 2-opt neighborhood
when the number of LSC’s exceeds the predetermined value C'hange32_Count without im-
proving the best value obtained.

We define the termination criteria as follows. When the predetermined number of itera-
tions, Stop_Count, throughout 2-opt and 3-opt phases is exhausted without improving the
objective function value, the algorithm stops.

Figure 4 shows the LSM for the QAP that incorporates the 2-opt and 3-opt neighbor-
hoods, life span (attribute), long term memory, and life span clear strategies.

5 Numerical Experiments

In this section, we report the results of our computational experiments. All computational
experiments were executed on Hitachi 3050 and algorithms were coded in the C language.
Running time were measured by making the system call times and converting to seconds.

Since parameter tunings would be of crucial importance, we executed extensive exper-
iments to select good or appropriate parameters for the LSM in Section 5.2. The major
difference between the previous tabu search algorithms and our LSM is the definition of the
attributes; so we compare these two alternative definitions of the attributes in Section 5.3.
Then, we compare the performance of the LSM with that of tabu search by Chakrapani and
Skorin-Kapov [7] that was known to be one of the best heuristic algorithms.

5.1 Test Problems

In our experiments, we used the same problems which have been used by Chakrapani and
Skorin-Kapov [7] to compare the performance with her tabu search (Augmented
Par_tabu). These problems are included in QAPLIB [2] (see Section 2.3).

Table 1 summarizes the experimental results in the previous work. All best solutions
were found by tabu search [7] or the genetic hybrid [10].

10

Table 1: Best known upper and lower bounds of Skorin-Kapov’s benchmark instances.

Problem | n | Best upper bound | Best lower bound
sko42 42 15812 [7] 14934 [20]
sko49 49 23386 [7] 22004 [20]
skob6 56 34458 [7] 32610 [20]
sko64 64 48498 [7] 45736 [20]
sko72 72 66256 [7] 62691 [20]
sko81 81 90998 [10] 86072 [20]
sko90 90 115534 [7] 108493 [20]

sko100a | 100 152002 [10] 142668 [20]

sko100b | 100 153890 [10] 143872 [20]

sko100c | 100 147862 [10] 139402 [20]

sko100d | 100 149576 [10] 139898 [20]

sko100e | 100 149150 [10] 140105 [20]

sko100f | 100 149036 [10] 139452 [20]

Table 2: The recommended values of the LSM parameters.

Prob. name | tabulength | « | Clear_Count | Change23_Count | Change32_Count | Stop-Count
sko42 15 25 100 10 5 5000
sko49 20 25 100 10 5 5000
skob6 25 30 100 10 5 5000
sko64 30 35 100 10 5 5000
skoT2 35 40 100 20 5 10000
sko81 40 40 100 40 5 20000
sko90 45 45 100 80 10 40000

skol00a 50 50 100 100 10 50000
skol100b 50 50 100 100 10 50000
skol00c 50 50 100 100 10 50000
skol100d 50 50 100 100 10 50000
skol00e 50 50 100 100 10 50000
skol00 f 50 50 100 100 10 50000

11

procedure life span method for QAP.
1 select w(€ II) arbitrary
2 LS(i,j) =0, LTM(i,j):=0 for all (i,j) € V xV
3 while terminate-criterion # yes do

4 while change23-criterion # yes do
5 7% = arg min{é(n’) : 7' € No(w), LS(i, k) =0 for all (i,k) € M(n"\ 7)}
6 LS(i, k) := tabulength for all (i,k) € M(7\ 7*)
7 LTM((i,k) = LTM(i, k) + 1 for all (i, k) € M(w\ 7*)
8 Ti=7"
9 for all (i,7)eV xV
10 if LS(i,j) > 0then LS(i,j):=LS(i,j)—1
11 while change32-criterion # yes do
12 7 = argmin{c(n’) : 7 € N3(m) U Nao(m), LS(i, k) = 0 for all (i, k) € M(7x"\ 7)}
13 LS(i, k) := tabulength for all (i,k) € M(7\ 7*)
14 mi=T7"
15 for all (i,j)eV xV
16 if LS(i,j) > 0then LS(i,j):=LS(i,j)—1

17 return

Figure 4: The LSM for the QAP.

5.2 Parameter Optimization

In this section, we will describe the experiments that induce the parameter settings of our
experiments. The recommended parameters that we will derive via extensive experiments
would be of value when we try to find an appropriate parameter setting for new data sets.n
Table 2 shows the recommended parameters. Also, the process for finding good parameters
would be of importance because it gives us the insight of the roles of various parameters.

The experiments to compare the performance of two alternative attributes (the object-
location and object pair attributes) will be shown in Section 5.2.4.

5.2.1 Optimization of tabulength

Since tabulength is one of the most important parameters which affect on the performance
and how mush time is required in searching, we set tabulength with care at first.

We performed 10 independent runs from different (random) initial solutions for each
tabulength. In this set of experiments, we do not use the other strategies such as the long
term memory, 3-opt neighborhood, and life span clear (LSC). We set the other parameters
as follows:

(o, Clear_Count, Change23_Count, Change32_count, Stop_-Count) = (0,0, 0, 0,5000).

Figure 5 shows the relationship between tabulength and the best cost function value ob-
tained. Table 3 shows, for each of a set of values for tabulength, the average cost and its

12

*

Table 3: Average cost and its variance by changing tabulength (* indicates the proper

range).
range Average Cost Variance range Average Cost Variance
1-10 16129.9 12496 151 — 160 16201.8 10700.7
11 — 20 * 16110.2 5367.8 | 161 — 170 16227.8 11819.6
21 - 30 16134.6 4668.7 | 171 — 180 16232.8 11601.5
31 —40 16147.5 6214.4 | 181 —190 16189.8 10854.5
41 — 50 16155.5 6603.1 | 191 — 200 16183.1 9377.9
51 — 60 16181.6 5579.9 | 201 — 210 16210.8 8341.6
61 — 70 16196.3 5762.9 | 211 — 220 16229.8 12124.0
71 — 80 16164.1 6058.8 | 221 — 230 16208.0 7358.0
81 —90 16184.0 8463.3 | 231 — 240 16219.7 13133.3
91 — 100 16216.4 11752.5 | 241 — 250 16241.1 12142.9
101 — 110 16223.1 8565.0 | 251 — 260 16202.6 12281.3
111 — 120 16179.8 85610.8 | 261 — 270 16221.9 9151.1
121 — 130 16205.8 9561.6 | 271 — 280 16192.4 13206.8
131 — 140 16231.4 8927.1 | 281 — 290 16227.4 9497.3
141 — 150 16204.8 9745.1 | 291 — 300 16223.2 9715.4

17000 T T T T T T T T T

16800 b

16600 [y

16400

cost

16200

16000

15800 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
tabulength

Figure 5: The relationship between the cost function and tabulength : (Stop_-Count = 5000).

13

Table 4: Average cost and its variance by changing « (* indicates the proper range).

Range Average Cost Variance | Range Average Cost Variance
0 16185.4 8764.3 | 51 —60 16145.1 5508.4
1-10 16165.3 51929 | 61 —70 16158.9 4233.8
11-20 16137.7 6314.6 | 71 —80 16141.6 7088.2
21 — 30" 16136.7 77822 | 81 —-90 16154.9 8621.3
31 —40 16144.0 6526.0 |91 — 100 16136.9 6580.0
41 — 50 16159.0 5447.9 - - -

variance.

Table 3 indicates that the average cost first decreases, then increases as tabulength in-
creases and all ranges have high variances. The same behavior occurs for the other test
problems. Observe that there is a proper range which gives the best average cost, and our
recommended value of tabulength = 15 falls within this range.

By executing similar experiments on other test problems, appropriate values of tabulength
were obtained as in Table 3. For the 3-opt neighborhood, we used the same values of
tabulength obtained by the experiments of the 2-opt neighborhood because we cannot find
major differences in performance when we change the parameter for the 3-opt neighborhood
and we have no reason to replace the parameter settings for the 2-opt neighborhood.

5.2.2 Optimization of «

The remaining important parameter is o that controls the intensity of the long term memory.
We set the other parameters as follows:

(tabulength, Clear Count, Change23_Count, Change32_count, Stop_-Count) = (15,0, 0,0,5000).

We performed 10 runs from different initial random solutions for each a. Figure 6 shows
the relationship between o and the best cost function value obtained. Table 4 shows the
results of this experiments. When « is between 21 and 30, the average cost is smaller than
the other ranges, but as a becomes too large or 0, i.e., we do not use the long term memory,
the average cost becomes larger.

Since the long term memory increases until the algorithm terminates, the gap between
A(i,7) and A’(7, 5) becomes larger as the number of iterations become larger. As a result,
the long term memory may demolish the ‘true’ objective function.

5.2.3 Optimization of Clear Count

The last important parameter to be analyzed is C'lear C'ount. We set the other parameters
as follows:

(tabulength, a, Change23_Count, Change32_count, Stop_-Count) = (15,25, 0,0, 5000).

Figure 8 shows the relationship between Clear C'ount and the best cost function value
obtained. We performed 10 runs from different initial (random) solutions for each «. Table

14

Figure 6:

cost

17000

16800

16600

16400

16200

16000

15800
0

The

relationship between

15, Stop_Count = 5000).

Figure T:

cost

17000

16800

16600

16400

16200

16000

15800
0

The relationship between the cost function and tabulength :

tabulength

the cost function and «

(tabulength

X

N
SO0 V8
X K X8
SO &

& 88 o 6

10, Stop_-Count = 5000).

40 50
tabulengthl

15

100

(cv

Table 5: Average cost and its variance by changing Clear_Count (

*

indicates the proper

range).

Range Average Cost Variance Range Average Cost Variance
100* 15869.5 278.8 1001 — 1100 15974.5 7898.8
200 15903.0 635.0 1101 — 1200 15964.5 4430.8
300 15904.0 262.0 1201 — 1300 15963.0 2115.0
400 15898.5 776.8 1301 — 1400 15995.0 2777.0
500 15965.0 1075.0 | 1401 — 1500 15933.0 2219.0
600 15924.5 426.8 1501 — 1600 16010.5 1802.8
700 15933.5 2164.8 | 1601 — 1700 15972.0 3944.0
800 15968.0 1462.0 | 1701 — 1800 16017.5 2852.8
900 15944.5 980.8 1801 — 1900 16018.0 996.0
1000 15990.0 3924.0 | 1901 — 2000 15965.0 821.0

17000

16800 |-

16600

16400

cost

16200

16000

15800

4000 6000
Clear_Count

Figure 8: The relationship between the cost function and Clear Count : (tabulength =
15, a = 10, Stop_-C'ount = 5000).

16

17000 T T T T T T T T

16800

16600

16400

cost

16200

16000

15800
0

10 20 30 40 50 60 70 80
tabulengthl

90 100

Figure 9: The relationship between the cost function and tabulength

0, Clear_Count = 100, Stop_C'ount = 5000).

17000 T T T T T T T T

16800

16600

16400

cost

16200

16000

15800
0 10 20 30 40 50 60 70 80
tabulengthl

Figure 10: The relationship between the cost function and
10, Clearcount = 100, Stop_Count = 5000).

17

tabulength

*

Table 6: Average cost and its variance incorporating all strategies (* indicates the proper

range).
Range Average Cost Variance | Range Average Cost Variance
1-10 15833.4 377.6 | 151 —160 15880.6 2184
11 — 20* 15831.4 276.8 161 — 170 15884.4 235.0
21 -30 15861.6 417.8 | 171 —-180 15876.0 120.8
31 —40 15857.5 305.7 | 181 —190 15869.6 767.8
41 — 50 15861.8 378.8 | 191 —200 15890.0 312.8
51 — 60 15869.0 518.6 | 201 —210 15870.6 315.2
61 — 70 15867.6 236.64 | 211 — 220 15868.0 450.4
71— 80 15872.6 340.0 |221-230 15876.0 326.4
81 —90 15880.4 177.4 | 231 —240 15872.8 86.56
91 — 100 15874.0 248.8 241 — 250 15882.2 221.96
101 — 110 15870.6 488.0 | 251 — 260 15882.8 614.56
111 — 120 15870.8 538.6 | 261 —270 15884.6 192.8
121 — 130 15874.0 316.0 |271—280 15862.6 448.0
131 — 140 15873.0 147.4 281 — 290 15883.2 401.8
141 — 150 15866.0 623.2 | 291 — 300 15882.8 471.4

5 shows the results of experiments, The recommended value of parameter Clear Count is
100. For the other test problems, we find that Clear_Count = 100 is a good choice via the
similar set of experiments. For the 3-opt neighborhood, the appropriate range of parameter
Clear Count is [5,10] via the similar sets of experiments.

5.2.4 Experiments Incorporating All Strategies

Generally speaking, as the parameters (Stop_-Count,Change23_Count, Change32_Count)
become larger, the solution values obtained become better. We can set the values of these
parameters by considering both the running time and the solution values. We performed
the similar experiments as in Section 5.2.1 by incorporating all parameters optimized above.
We set the parameter as follows:

(a, Clear_Count, Change23_Count, Change32_Count, Stop_-Count) = (25,100, 100, 5, 5000)

We run the LSM with the above parameters starting from 10 different initial solutions for

each tabulength. Figure 11 illustrates the relationship between tabulength and the best
cost incorporating all strategies. By comparing Figure 5 with Figure 11, we observe that
the values and variances of solutions are dramatically decreased by incorporating various
strategies and then by optimizing the parameters.

5.3 Comparison of the Attribute Selection

18

Table 7: Performance comparison of best upper bounds (BUB) and the total number of
iterations (TNI).

LSM Augmented Par_tabu
Prob. name | BUB TNI(2-opt) TNI(2-opt + n x 3-opt) | BUB TNI
sko42 15812 9653 17045 15812 89432
sko49 23386 9659 17352 23386 112810
skob6 34458 20067 26787 34458 136901
sko64 48498 28324 38628 48498 145056
sko72 66256 36097 51829 66256 198129
sko81 90998 36467 59066 91008 191571
sko90 115534 45980 63620 115586 268416
sko100a 152002 75345 126545 152014 199882
skol00b 153890 68208 123208 153890 274480
sko100c 147862 79829 141229 147868 306954
sko100d 149576 67788 118788 149596 257855
sko100e 149150 69144 124444 149156 311458
sko100f 149036 72345 120645 149036 308587

We then compare two alternative definitions of the attribute set. Ome is the object-
location attribute that keeps the pair of an object and its location in the life span. The other
is the object pair attribute that keeps the pair of objects in the life span.

We have already shown how to tune up the parameters for the object-location attribute
that is our own choice. We execute the same experiments for the object pair attribute and
find the recommended values of the various parameters.

(a, Clear_Count, Change23_Count, Change32_Count, Stop_-Count) = (30,100, 100, 5, 5000)

Figure 12 shows the relationship between tabulength and the best cost for the object pair
attribute. As can be seen from Figures 11 and 12, the object-location attribute is less sensitive
to choices of tabulength, and thus yields wider proper range than the object pair attribute.
The solution values and variances obtained by the object-location attribute are smaller than
those of the object pair attribute. The same phenomenon were observed in the other test
data.

5.4 Results of Experiments

In this section, we present the results of experiments using the parameters adjusted via the
above experiments.

First, we compare the best found solutions with previous results. Since each researcher
has different computational environment, if we can know, we substitute the total number of
iterations for the executed time. Table 7 summarizes the best upper bounds and the total
number of iterations achieved by the LSM and Augmented Par tabu [7]. We consider that
one iteration of 3-opt neighborhood corresponds to n times as large as one iteration of 2-opt
neighborhood.

19

17000 T T T T T T T T T

16800

16600

16400

cost

16200

16000

15800

50
tabulength

Figure 11: The relationship between the cost function and tabulength incorporating all
strategies. The attribute is the object-location type.

17000 T T T T T

16800

16600

16400

cost

16200 | —

0 50 100 150 200 250 300
tabulength

Figure 12: The relationship between the cost function and tabulength incorporating all
strategies. The attribute is the object pair type.

20

Table 8: The average behavior of the LSM.
Time(sec) Solution
Name | Min Avg (Std. Dev.) Max Min Avg (Std. Dev.) Max
sko42 297.5 473.9(115.6) 761.5 | 15812 15825.3(17.0) 15864
sko49 116.9 180.1(55.0) 295.4 | 23386 23426.5(25.1) 23462
skob6 204.4 381.3(157.0) 728.4 | 34458 34518.2(39.6) 34570
sko64 372.8 512.1(121.1) 725.1 | 48498 48552(65.4) 48962
sko72 841.5 1128.2(250.0 1581.9 | 66256 66405.2(87.4) 66550
sko81 | 1252.6 1765.3(464.6 2602.7 | 90998 91217.2(189.6) 91450
sko90 | 1806.9 2752.6(638.7 3935.3 | 115534 115759.8(114.38) 116268
skol00a | 5360.3 5461.3(102.8 5562.4 | 152002 152093.9(41.1) 152222
skol00b | 5505.2 5569.9(65.9) 5634.7 | 153890 153943.9(41.5) 154108
sko100c | 6266.0 6983.9(729.6 7701.4 | 147862 147893.2(23.7) 147966
skol00d | 5257.7 5294.6(37.56 5331.6 | 149576 149670.8(110.4) 149972
skol00e | 5565.3 5941.7(382.9 6318.2 | 149150 149215.9.9(100.9) 149694
skol00f | 5342.6 ~ 5493.1(153.1 5643.6 | 149036 149093.3(45.9) 149216

— — — —

S— N N

In Table 8, we investigate the average performance of the LSM by performing 30 runs
on each problem to obtain the sample mean, standard deviation, maximum and minimum
of the solution values, and running time.

6 Conclusions

We applied a variant of tabu search, which we call the life span method (LSM), to the
quadratic assignment problem (QAP) and performed the extensive experiments including
parameter optimization. We also presented a formula to calculate the differences in objective
function values for all 3-opt neighborhoods in O(n?) time.

The conclusions obtained by extensive experiments are as follows.

1. The LSM is an extremely efficient approximate algorithm for the QAP that has been
known to be one of the notoriously difficult NP-hard problems. For all instances we
tested, relatively long LSM runs give us the best known solutions.

2. There can be an advantage to the combination of the 2-opt and 3-opt neighborhoods
rather than the single use of the 2-opt neighborhood. The 3-opt neighborhood seems
to be of value to escape from a deep local optima.

3. The object-location attribute that is the natural consequence of the definition of the
LSM seems to be superior to the object pair attribute that has been used in the liter-
ature. The object-location attribute combined with other strategies makes the search
robust; there exists a broad proper range of appropriate values of algorithm parameters.

4. The extensive experimental analysis shows that a good value of the parameter tabulength
that controls the short-term memory of the LSM is within the range [n/3,n/2] for the

21

QAP with size n.

. Definitions of attributes affect the good values of parameter tabulength. The recom-

mended values of tabulength in this study are slightly smaller than those of previous
work. Chakrapani and Skorin-Kapov [7] used two ranges [n/2,n]| and [n,2n|. Chakra-
pani and Skorin-Kapov [7] recommended the range [n/2,n|. Skorin-Kapov [27] used
several values n/6,n/4,n/3,n/2 of tabulength that was dynamically changed.

. The long term memory would be helpful to diversify the search. It makes the proper

range of good values of parameter tabulength much wider. Good values of the intensity
of the long term memory («) is near n/2, i.e., the long term memory LT M is added
to the objective function after multiplied by n/200. Proper ranges of parameter « are
much wider than those of parameter tabulength.

Clearing the tabu status (life span) periodically would be of value to intensify the
search. Good values of the parameter (Clear_Count) to control the interval of clearing
the life span seem to be 100 or less, and are independent of the size of the problem.

. Appropriate parameters that have been tuned up via extensive experimental analyses

lead to the algorithm that performs extremely well. For new data sets, good parameters
can be found using the observations obtained from our experiments.

We are prepared to provide our code for solving the QAP used in the study. Interested

readers can contact one of the authors.

References

1]

2]

E.H.L. Aarts and J.H.M Korst. Simulated Annealing and Boltzmann Machines. John
Wiley & Sons, Chichester, U.K., 1989.

R. E. Burkard, S. Karisch, and F. Rendl. QAPLIB - a quadratic assignment prblem
liblary. European Journal of Operational Research, 55:115-119, 1991. Updated version
- Feb. 1994.

R. E. Burkard and F. Rendl. A thermodynamically motivated simulation procedure
for combinatorial optimization problems. Furopean Journal of Operational Research,
17:169-174, 1984.

N.E. Collins, R.W. Eglese, and B.L. Golden. Simulated annealing: an annotated bib-
liography. American Journal of Mathematical and Management Sciences, 8:205-307,
1988.

D. T. Connolly. An improved annealing scheme for the QAP. Furopean Journal of
Operational Research, 46:93-100, 1990.

J. C. Chakrapani and J. Skorin-Kapov. A connectionist approach to the quadratic
assignment problem. Computers and Operations Research, 19(3/4):287-295, 1992.

22

[7]

8]

[9]

[10]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Chakrapani and J. Skorin-Kapov. Massively parallel tabu search for the quadratic
assignment problem. Annals of Operations Research, 41:327-341, 1993.

J. Chakrapani and J. Skorin-Kapov. A constructive method for improving lower bounds
for a class of quadratic assignment problems. Operations Research, 42:837-845, 1994.

G. Finke, R. E. Burkard, and F. Rendl. Quadratic assignment problems. Annals of
Discrete Mathematics, 31:61-82, 1987.

C. Fleurent and J. A. Freland. Genetic hybrids for the quadratic assignment problem. In
P. M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems,
American Mathematical Society, 1994.

A. M. Frieze and J. Yadegar. On the quadratic assignment problem. Discrete Applied
Mathmatics, 5:89-98, 1983.

P. C. Gilmore. Optimal and suboptimal algorithms for the quadratic assignment prob-
lem. J.STAM, 10:305-313, 1962.

F. Glover. Tabu search I. ORSA Journal on Computing, 1:190-206, 1989.
F. Glover. Tabu search II. ORSA Journal on Computing, 2:4-32, 1989.

F. Glover. Tabu search. A chapter in Modern Heuristic Techniques for Combinatorial
Problems, 1992.

D. E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley, Reading, MA, 1989.

P. Hansen. The steepest ascent mildest descent heuristic for combinatorial programming.
In The Congress on Numerical Methods in combinatorial Optimization, Capri, March
1986.

P. Hansen and B. Jaumard. Algorithms for the maximum satisfiablity problem. Com-
puting, 44:279-303, 1990.

T. C. Koopmans and M. J. Beckmann. Assignment problems and the location of eco-
nomic activities. Econometrica, 25:53-76, 1957.

S. E. Karisch and F. Rendl. Lower bounds for the quadratic assignment problem via
triangle decompositions. Technical report 28, CDLDO-40, Technishe Universitat Graz,
Streyrergasse 30, A-8010 Graz, Austria, February 1994.

M. Kubo. The Life Span Method — A New Variant of Local Search —. Technical Report 1,
Tokyo University of Mercantile Marine, April 1993. presented in The Institute of Statics
and Mathematics on March 29, 1993.

E. L. Lawler. The quadratic assignment problem. Management Science, 9:586-599,
1963.

23

(23] Y.LI, P. M. Pardalos and M. G. C. Resende. A greedy randomized adaptive search
procedure for the quadratic assignment problem, 1993. To appear in DIMACS Series
in Discrete Mathematics and Theoretical Computer Science.

[24] Z. Michalewicz. Genetic Algorithm + Data Structure = Fvolution Programs. Springer
Verlag, 1992.

[25] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, 1982.

[26] J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem. ORSA
Journal on Computing, 2(1):33-45, 1990.

[27] J. Skorin-Kapov. Extensions of a tabu search adaptation to the quadratic assignment
problem. Computers and Operations Research, to appear.

(28] E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Com-
puting, 17:443-455, 1990.

[29] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Practice.
Kluwer Academic Publishers, Dordrrecht, The Netherlands, 1987.

[30] F. Rendle and H.Wolkowicz. A recipe for best semidefinite relaxation for (0,1)-quadratic
programming Research Report CORR 94-7, University of Waterloo, Waterloo, Ontario,
1994.

[31] M. R. Wilherm and T. L. Ward. Solving quadratic assignment problem by ‘simulated
annealing’. IIF Transactions, 19:107-119, 1987.

24

