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Abstract. SDPA (SemiDefinite Programming Algorithm) is a C++ implementation of a Mehrotra-type
primal-dual predictor-corrector interior-point method for solving the standard form semidefinite program
and its dual. We report numerical results of large scale problems to evaluate its performance, and investigate
how major time-consuming parts of SDPA vary with the problem size, the number of constraints and the
sparsity of data matrices.

1.1 INTRODUCTION.

The main purpose of this paper is to evaluate the performance of SDPA (SemiDefinite Programming Algo-
rithm) [6] for semidefinite programs. Besides SDPA, there are some computer programs SDPpack [3], SDP-
SOL [28], CSDP [5], SDPHA [21] and SDPT3 [23] for semidefinite programs which are available through
the Internet. Among others, we mainly compare SDPA with SDPT3 through numerical experiments on
several types of test problems. Either of them is an implementation of a Mehrotra-type [15] primal-dual
predictor-corrector interior-point method. The choice of SDPT3 as a competitor of SDPA was based on
the preliminary numerical experiments given in Section 4. Although three types of search directions, the
HRVW/KSH/M direction [11, 14, 17], the NT direction [19, 20, 22] and the AHO direction [1, 2] are avail-
able in both of SDPA and SDPT3, we employed the HRVW/KSH/M direction in our numerical experiments
because its computation is the cheapest among the three directions (particularly, for sparse data matrices)
when we employ the method proposed by Fujisawa et al. [7]. Monteiro et al. [18] recently showed that
in theory, the NT direction requires less computation for dense matrices. However, their method needs
large amount of memory and does not efficiently exploit the sparse data structures. Actually, according
to their numerical results, the computation of the HRVW/KSH/M direction is favorable compared to the
computation of the NT and AHO directions.



The main differences between SDPA and SDPT3 are:

(a) The programming languages used for SDPA and SDPT3 are different; the former is written in C++
while the latter is written in MATLAB.

(b) SDPA incorporates dense and sparse matrix data structures and an efficient method proposed by [7]
for computing search directions when the problem is large scale and sparse.

When the problem is dense, SDPA is a few times faster than SDPT3 mainly because of the reason (a). The
feature (b) of SDPA is crucial in solving large scale sparse problems. It saves not only much memory, but
also much computation time. Without such a sparsity consideration, it would be difficult to solve large scale
sparse semidefinite programs arising from semidefinite relaxation of combinatorial optimization problems.
We will also observe through the numerical results that SDPA is as stable and efficient (measured in the
number of iterations) as SDPT3 for such small and medium scale semidefinite programs that SDPT3 can
solve within a reasonable time.

Let Rn×n and Sn ⊂ Rn×n denote the set of all n × n real matrices and the set of all n × n real
symmetric matrices, respectively. We use the notation U • V for the inner product of U , V ∈ Rn×n, i.e.,
U • V =

∑n
i=1

∑n
j=1 UijVij , where Uij and Vij denote the (i, j)th element of U and V , respectively. We

write X � O and X � O when X ∈ Sn is positive semidefinite and positive definite, respectively.

Let Ai ∈ Sn (0 ≤ i ≤ m) and bi ∈ R (1 ≤ i ≤ m). SDPA solves the standard form semidefinite program
and its dual:

P: minimize A0 •X subject to Ai •X = bi (1 ≤ i ≤ m), X � O.

D: maximize
m∑

i=1

biyi subject to
m∑

i=1

Aiyi + Z = A0, Z � O.

 (1.1)

For simplicity, we say that (X, y, Z) is a feasible solution (an interior-feasible solution, or an optimal
solution, respectively) of the SDP (1.1) if X is a feasible solution (an interior-feasible solution, i.e., a
feasible solution satisfying X � O or a minimizing solution, respectively) of P and (y, Z) is a feasible
solution (an interior-feasible solution, i.e., a feasible solution satisfying Z � O or a maximizing solution,
respectively) of D.

In Section 2, we present some issues on the implementation of SDPA which are relevant for our numerical
experiments. Section 3 is devoted to seven kinds of test problems, and Section 4 to preliminary numerical
experiments for deciding the target software and the search direction we employ. In Section 5, we present
numerical results and their analyses on those test problems solved by SDPA and SDPT3. We report the
total CPU time and the number of iterations required to attain a given accuracy ε∗. We also investigate
each individual CPU time for major time-consuming parts in SDPA such as computation of an m×m dense
symmetric matrix B induced from the Newton equation for search directions, LDLT factorization of B,
and approximation of the minimum eigenvalues of some matrices used for computing step lengths. We will
see that the most time consuming part deeply depends on the size n of the variable matrices X and Z, the
number m of equalities of P and the sparsity of data matrices Ai (0 ≤ i ≤ m).

1.2 SOME ISSUES OF THE IMPLEMENTATION OF SDPA.

We describe the HRVW/KSH/M search direction in Section 2.1, and an efficient method for approximating
the minimum eigenvalue of a symmetric matrix in Section 2.2. Next, we explain the algorithmic framework of
SDPA in Section 2.3 and, finally, the technical details about infeasibility and unboundedness in Section 2.4.

1.2.1 Search Direction.

The HRVW/KSH/M direction at the current iterate (X , y, Z) is the solution (dX , dy, dZ) of the system of
equations

Ai • dX = pi (1 ≤ i ≤ m), dX ∈ Sn, (1.2)
m∑

i=1

Aidyi + dZ = D, dZ ∈ Sn, (1.3)

d̂XZ + XdZ = K, d̂X ∈ Rn×n, dX = (d̂X + d̂X
T
)/2. (1.4)
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NUMERICAL EVALUATION OF SDPA 3Here

pi = bi −Ai •X (1 ≤ i ≤ m),

D = A0 −
m∑

i=1

Aiyi −Z,

and K denotes an n×n constant matrix which is specified later in Section 2.3. Note that d̂X ∈ Rn×n serves
as an auxiliary variable matrix. Under the linear independence assumption on the set {Ai : 1 ≤ i ≤ m} of
constraint matrices, we know [14] that for any X � O, Z � O and K ∈ Rn×n, the system of equations
(1.2), (1.3) and (1.4) has a unique solution (dX , dy, dZ).

We can reduce the system of equations (1.2), (1.3) and (1.4) to

Bdy = g, (1.5)

dZ = D −
m∑

i=1

Aidyi,

d̂X = (K −XdZ) Z−1, dX = (d̂X + d̂X
T
)/2,

 (1.6)

where
Bij = XAiZ

−1 •Aj (1 ≤ i ≤ m, 1 ≤ j ≤ m)
gi = pi − (K −XD)Z−1 •Ai (1 ≤ i ≤ m).

}
(1.7)

The matrices X , Z−1 and B are symmetric and dense in general even when all Ai (1 ≤ i ≤ m) are sparse.
Hence solving the system of equations (1.5) in dy by using a direct method such as the Cholesky factorization
and the LDLT factorization of B requires O(m3) arithmetic operations. On the other hand, if we treat
all Ai (1 ≤ i ≤ m) as dense matrices and if we use the above formulae (1.7) for the coefficient matrix B
in a straightforward way, the computation of B requires O(mn3 + m2n2) arithmetic operations. Therefore
computing the coefficient matrix B is more crucial than solving Bdy = g in the entire computation of the
HRVW/KSH/M direction.

In their paper [7], Fujisawa, Kojima and Nakata proposed three distinct formulae F 1, F2 and F3 for
computing B, and their efficient combination F ∗. They demonstrated through numerical experiments that
the combined formula F∗ worked very efficiently when some of Ai (1 ≤ i ≤ m) are sparse. We incorporated
their formula F∗ into SDPA. See the paper [7] for more details.

1.2.2 Approximation of the Minimum Eigenvalue of a Symmetric Matrix.

We need to compute the minimum eigenvalue of a symmetric matrix when we compute the primal and
dual step lengths in SDPA. Let (X, y, Z) denote a current iterate satisfying X � O and Z � O, and
(dX , dy, dZ) be a search direction. Then the primal step length αp is computed as follows:

ᾱp = max{α ∈ [0, 1] : X + αdX � O} and αp = γᾱp,

where γ ∈ (0, 1) denotes a prescribed parameter. Applying the Cholesky factorization to the positive definite
matrix X , we have an n × n lower triangular matrix L such that X = LLT . Then we can rewrite ᾱp as

ᾱp = max{α ∈ [0, 1] : I + αL−1dXL−T � O},
=

{
min{−1/ξmin, 1} if ξmin < 0,
1 otherwise,

where ξmin denotes the minimum eigenvalue of L−1dXL−T , which coincides with the minimum eigenvalue
of X−1dX . The dual step length αd is computed similarly;

ᾱd =
{

min{−1/ηmin, 1} if ηmin < 0,
1 otherwise, ,

αd = γᾱd,

where ηmin denotes the minimum eigenvalue of M−1dZM−T , and Z = MMT denotes the Cholesky
factorization of Z.



4 In the remainder of this section, we present an efficient method for approximating the minimum eigenvalue
of an n×n symmetric matrix U ∈ Sn. Our method is known as the bisection method for finding eigenvalues
of a symmetric tridiagonal matrix. Applying the Householder tridiagonalization to U , we first transform
U to a symmetric tridiagonal matrix T having the same eigenvalues as U (see, for example, [9]). Let T r

denote the leading r × r principal submatrix of T ;

T r =



a1 b2 . . . 0

b2 a2
. . .

...
. . . . . . . . .

...
. . . ar−1 br

0 . . . br ar

 .

By definition, T = T n. Assume that some br (2 ≤ r ≤ n) vanishes. In this case, if we rewrite T as

T =
(

T r−1 0
0 S

)
,

then λmin(T ) = min{λmin(T r−1), λmin(S)}. We note that either of T r−1 and S is a tridiagonal symmetric
matrix with a size smaller than the size n of T . Therefore we will assume below that no br (2 ≤ r ≤ n)
vanishes.

Now we define the polynomials p0(λ) = 1 and pr(λ) = det(T r − λI) (1 ≤ r ≤ n). Then the minimum
eigenvalue λmin(T ) of T , which we want to compute, corresponds to the minimum root of the polynomial
pn(λ). We can compute pr(λ) = det(T r − λI) by the following recursive formulae:

p0(λ) = 1, p1(λ) = a1 − λ
pr(λ) = (ar − λ)pr−1(λ) − b2rpr−2(λ) (2 ≤ r ≤ n).

Theorem 1.2.1. Sturm Sequence Property [9, Theorem 8.4-1] Assume that b r �= 0 (2 ≤ r ≤ n).

(i) If pr(λ) = 0 for some r ∈ {1, 2, . . ., n− 1}, then pr+1(λ)pr−1(λ) < 0

(ii) Let λ ∈ R. Let σ(λ) denote the number of sign changes in the sequence

{p0(λ), p1(λ), . . . , pn(λ)}.
Then σ(λ) equals the number of T ’s eigenvalues that are less than λ. Here we assume that pr(λ) has
the opposite sign from pr−1(λ) if pr−1(λ) �= 0 and pr(λ)pr−1(λ) ≤ 0 and that pr(λ) has the same sign
as pr−1(λ) if pr−1(λ) = 0 or pr(λ)pr−1(λ) > 0.

From the Gerschgorin circle theorem (see, for example, [9, Theorem 7.2-1]), we also know that λmin(T ) ∈
[λ, λ] where

λ = min
1≤i≤n

ai − |bi| − |bi+1| and λ = max
1≤i≤n

ai + |bi|+ |bi+1|. (1.8)

Here we assume that b1 = bn+1 = 0.

Let λ < λ < λ. Recall that p0(λ) = 1 > 0. Hence, by the theorem above, if

pk(λ) > 0 (0 ≤ k < r) and pr(λ) ≤ 0 (1.9)

for some r ∈ {1, 2, . . . , n}, then we know that λmin(T ) ∈ [λ, λ], and otherwise λmin(T ) ∈ [λ, λ].

Summarizing the discussions above, we now present the bisection method to approximate the minimum
eigenvalue λmin(T ).

Bisection method for finding an approximate value of λ min(T ):

Step 0: Define λ and λ by (1.8). Let ε > 0.

Step 1: If |λ− λ| < ε(|λ|+ |λ|), then stop the iteration and output λ.



NUMERICAL EVALUATION OF SDPA 5Step 2: Let λ = (λ + λ)/2, r = 1 and p1(λ) = a1 − λ.

Step 3: If pr(λ) ≤ 0, then λ = λ and go to Step 1.

Step 4: r = r + 1.

Step 5: If r > n, then λ = λ and go to Step 1.

Step 6: Let pr(λ) = (ar − λ)pr−1(λ) − b2rpr−2(λ) and go to Step 3.

Remark 1.2.2. In practice, generating the sequence {pr(λ) : r = 0, 1, 2, . . ., n} often yields numerical
instability, i.e., an overflow of the numerical value pr(λ) for larger r. SDPA employs the sequence {qr(λ) :
r = 1, 2, . . . , n} defined below instead of the sequence {pr(λ) : r = 0, 1, 2, . . . , n}. For every r = 1, 2, . . . , n
and λ ∈ R, let

qr(λ) =
{

pr(λ)/pr−1(λ) if pr−1(λ) �= 0,
+∞ otherwise

For every λ ∈ R, we can compute qr(λ) (1 ≤ r ≤ n) recursively as

qr(λ) = ar − λ− b2r/qr−1(λ)

as long as qr−1(λ) �= 0. By definition, we see that (1.9) holds if and only if

qk(λ) > 0 (0 ≤ k < r) and qr(λ) ≤ 0 (1.10)

hold. Therefore we can consistently utilize the sequence {qr(λ) : r = 1, 2, . . . , n}, which is more stable
numerically, instead of the sequence {pr(λ) : r = 0, 1, 2, . . ., n} if we replace Step 6 by

Step 6’: Let qr(λ) = (ar − λ)− b2r/qr−1(λ) and go to Step 3.

Remark 1.2.3. There are different methods for computing the minimum eigenvalue of a real symmetric
matrix, for example, the bisection method, the power method and so on. The computation of the minimum
eigenvalue employing the bisection method takes O(n3) arithmetic operations because the Householder
tridiagonalization is required. Undoubtedly, the bisection method is not the bottleneck in the eigenvalue
computation at all, if we only need the minimum eigenvalue. According to our numerical experiments, the
Householder tridiagonalization of L−1dXL−T ∈ Sn×n (n = 300) in Section 2.2 takes about 129.95 seconds,
but the bisection method only takes about 0.72 seconds. We observed, however, the following tendency.
The power method for finding the minimum eigenvalue is an approximative iterative method. The required
number of iterations until the power method converges strongly depends on the given accuracy ε∗ and the
problem to be solved. If more than Ω(n) iterations is required, the power method costs more computation
time than the bisection method because the power method executes O(n2) arithmetic operations per iter-
ation. In fact, for the same example above (n = 300), our numerical experiments showed that the power
method takes about 300.23 seconds to find the same solution with less accuracy. Therefore, judging from
the efficiency and stability of the algorithm, the bisection method is one of the recommended methods for
computing the minimum eigenvalue.

1.2.3 The Algorithmic Framework of SDPA.

Step 0 : Set an initial point (X 0, y0, Z0) with X0 � O, Z0 � O, and a positive integer k∗ for the
number of maximum iterations. Decide on the search direction to use. Set the parameters: 0.0 < ε∗,
0.80 ≤ γ ≤ 0.98, 0.01 ≤ β∗ ≤ 0.10 and β∗ ≤ β̄ ≤ 0.20. (The default values of these parameters are:
k∗ = 50 , ε∗ = 10−5, γ = 0.95, β∗ = 0.05 and β̄ = 0.1). Let k = 0.

Step 1 : If the current iterate (X , y, Z) = (Xk, yk, Zk) is feasible and the relative gap

|P −D|
max{1.0, (|P |+ |D|)/2}

gets smaller than ε∗, then stop the iteration. Here P and D denote the primal and the dual objective
values, respectively. In this case, (X , y, Z) gives an approximate optimal solution of the SDP (1.1).



6 If k ≥ k∗ then stop the iteration. If P or D of the SDP (1.1) is likely to be infeasible or unbounded,
then stop the iteration. More details of this part will be described in Section 2.4.

Step 2 : (Predictor Step) Let

βp =
{

0 if the current iterate is feasible,
β̄ otherwise.

Solve the system of equations (1.2), (1.3) and (1.4) with K = βp(X •Z/n)I −XZ to compute the
predictor direction (dXp, dyp, dZp).

Step 3 : (Corrector Step) Let

β =
(X + ᾱpdXp) • (Z + ᾱddZp)

(X •Z)
,

where
ᾱp = max{α ∈ [0, 1] : X + αdX p � O},
ᾱd = max{α ∈ [0, 1] : Z + αdZ p � O}.

See Section 2.2 for more details. Choose the parameter βc as follows:

βc =

 max{β∗, β2} if the current iterate is feasible and β ≤ 1.0,
max{β̄, β2} if the current iterate is infeasible and β ≤ 1.0,
1.0 otherwise.

Compute the combined predictor-corrector direction (dX , dy, dZ) by solving the system of equations
(1.2), (1.3) and (1.4) with K = βc(X •Z/n)I −XZ − dXpdZp.

Step 4 : Set the next iterate (Xk+1, yk+1, Zk+1) such that

Xk+1 = Xk + γᾱpdX and

(yk+1, Zk+1) = (yk, Zk) + γᾱd(dy, dZ),

where
ᾱp = max{α ∈ [0, 1] : X + αdX � O},
ᾱd = max{α ∈ [0, 1] : Z + αdZ � O}.

See Section 2.2 for more details.

Step 5 : k ←− k + 1 and go to Step 1.

1.2.4 Getting Information on Infeasibility and Unboundedness.

In additions to the parameters ε∗, γ, β∗ and β̄, we introduce three parameters 	∗ ∈ R, u∗ ∈ R and ω∗ > 1
at Step 0 of the algorithmic framework of SDPA; the default values of these parameters are: 	∗ = −105,
u∗ = 105 and ω∗ = 2.0. We also set ηp = ηd = +∞ at Step 0.

First we describe how SDPA guesses the unboundedness of the primal problem P or the dual problem
D of the SDP (1.1).

(a) If the current iterate (Xk, yk, Zk) is primal-feasible and A0 •Xk ≤ 	∗, then SDPA regards that P is
likely to be unbounded; hence the dual problem D is likely to be infeasible.

(b) If the current iterate (Xk, yk, Zk) is dual-feasible and
m∑

i=1

biy
k
i ≥ u∗, then SDPA regards that D is

likely to be unbounded; hence the primal problem P is likely to be infeasible.

Now we show how SDPA guesses the infeasibility of the SDP (1.1). The discussion below is based on the
paper [14]. We can prove that each iterate (Xk, yk, Zk) satisfies

Xk � O, Zk � O,

pk
i ≡ bi −Ai •Xk = θk

pp0
i (1 ≤ i ≤ m),

Dk ≡ A0 −
m∑

i=1

Aiy
k
i −Zk = θk

dD0,

 (1.11)
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1 = θ0
p ≥ θk

p ≥ θk+1
p ≥ 0 (k = 1, 2, . . . ),

1 = θ0
d ≥ θk

d ≥ θk+1
d ≥ 0 (k = 1, 2, . . . ),

p0
i = bi −Ai •X0 (1 ≤ i ≤ m) (the initial primal residuals),

D0 = A0 −
m∑

i=1

Aiy
0
i −Z0 (the initial dual residual matrix).

For k = 0, (1.11) follows directly from the definitions of the initial primal residual vector p0 = (p0
1, p

0
2, . . . , p

0
m)T ∈

Rm and the initial dual residual matrix D0 ∈ Sn. For k > 0, (1.11) means that the primal residual vector
pk = (pk

1 , pk
2, . . . , p

k
m)T ∈ Rm lies on the line segment {θp0 : θ ∈ [0, 1]}, and the dual residual matrix

Dk ∈ Sn on the line segment {θD0 : θ ∈ [0, 1]}. We also see that the current iterate (Xk, yk, Zk) is
primal-feasible if and only if θk

p = 0, and dual-feasible if and only if θk
d = 0. At Step 1, we update ηp and

ηd as follows:
ηp = min{ηp, Xk •Z0} if (Xk, yk, Zk) is primal-feasible,
ηd = min{ηd, X0 •Zk} if (Xk, yk, Zk) is dual-feasible.

Then we obtain the following:

(c) If (Xk, yk, Zk) is dual-feasible and

1 < ρp ≡
θk
pX0 •Zk

(θk
p + ω∗(1− θk

p ))ηd + Xk •Zk
, (1.12)

then there is no feasible solution X of the primal problem P such that

ω∗X0 � X � O.

(d) If (Xk, yk, Zk) is primal-feasible and

1 < ρd ≡ θk
dXk •Z0

(θk
d + ω∗(1 − θk

d))ηp + Xk •Zk
,

then there is no feasible solution (y, Z) of the dual problem D such that

ω∗Z0 � Z � O.

(e) If (Xk, yk, Zk) is primal-infeasible, dual-infeasible, and

1 < ρpd ≡
θk
dXk •Z0 + θk

pX0 •Zk(
θk
pθk

d + ω∗(θk
p (1− θk

d) + (1− θk
p )θk

d )
)
X0 •Z0 + Xk •Zk

, (1.13)

then there is no optimal solution (X∗, y∗, Z∗) of the SDP (1.1) such that

ω∗X0 � X∗ � O, ω∗Z0 � Z∗ � O,

X∗ •Z∗ = A0 •X∗ −
m∑

i=1

biy
∗
i = 0 (no duality gap).

 (1.14)

The remainder of this section is devoted to the proofs of assertions (c), (d) and (e) above. First we will
show that the inequality

θk
dXk •Z0 + θk

pX0 •Zk

≤ θk
dθk

pX0 •Z0 + θk
d (1− θk

p )X̄ •Z0

+(1− θk
d)θk

pX0 • Z̄ + (1− θk
d)(1− θk

p )X̄ • Z̄ + Xk •Zk (1.15)



8holds for any feasible solution (X̄, ȳ, Z̄) of the SDP (1.1). Let (X̄ , ȳ, Z̄) be a feasible solution of the SDP
(1.1). Let

X ′ = θk
pX0 + (1− θk

p )X̄ and (y′, Z ′) = θk
d(y0, Z0) + (1− θk

d)(ȳ, Z̄).

Then (Xk, yk, Zk) and (X ′, y′, Z ′) satisfy

bi −Ai •Xk = bi −Ai •X ′ = θk
pp0

i (i = 1, 2, . . . , m),

A0 −
m∑

i=1

Aiy
k
i −Zk = A0 −

m∑
i=1

Aiy
′
i − Z′ = θk

dD0.

Hence

0 = (X′ −Xk) • (Z ′ − Zk)

=
(
θk
p X0 + (1 − θk

p )X̄ −Xk
)
•

(
θk
dZ0 + (1− θk

d)Z̄ −Zk
)

=
(
θk
pX0 + (1− θk

p )X̄
) • (

θk
dZ0 + (1− θk

d)Z̄
)

−Xk • (
θk
dZ0 + (1− θk

d)Z̄
) − (

θk
pX0 + (1− θk

p )X̄
) •Zk + Xk •Zk

≤ θk
dθk

pX0 •Z0 + θk
d (1− θk

p )X̄ •Z0

+(1− θk
d)θk

pX0 • Z̄ + (1− θk
d)(1− θk

p )X̄ • Z̄

−θk
dXk •Z0 − θk

pX0 •Zk + Xk •Zk.

Thus (1.15) follows.

Now we are ready to derive assertion (c). By assumption, we know that θk
p > 0, θk

d = 0 and ηd = X0•Zr <

∞ for some dual feasible (X r, yr, Zr) (0 ≤ r ≤ k). Assume on the contrary that there is a feasible solution
X of the primal problem P such that ω∗X0 � X � O. Then, letting (X̄ , ȳ, Z̄) = (X , yr , Zr), we have a
feasible solution of the SDP (1.1). It follows from (1.15) that

1 ≥ θk
pX0 •Zk

θk
pX0 • Z̄ + (1− θk

p )X̄ • Z̄ + Xk •Zk

≥ θk
pX0 •Zk

θk
pX0 • Z̄ + ω∗(1− θk

p )X0 • Z̄ + Xk •Zk

=
θk
pX0 •Zk(

θk
p + ω∗(1− θk

p )
)
ηd + Xk •Zk

= ρp

This contradicts to assumption (1.12). Thus we have shown assertion (c).

We can prove assertion (d) similarly.

Finally we prove assertion (e). In this case, we have that θk
d > 0 and θk

p > 0 . Assume on the contrary that
there is an optimal solution (X∗, y∗, Z∗) satisfying the conditions in (1.14). Let (X̄ , ȳ, Z̄) = (X∗, y∗, Z∗).
Then X̄ • Z̄ = 0 and inequality (1.15) holds. Hence

1 ≥ θk
dXk •Z0 + θk

pX0 •Zk

θk
dθk

pX0 •Z0 + θk
d(1− θk

p )X̄ •Z0 + (1− θk
d)θk

pX0 • Z̄ + Xk •Zk

≥ θk
dXk •Z0 + θk

p X0 •Zk(
θk
dθk

p + ω∗θk
d(1− θk

p ) + ω∗(1− θk
d)θk

p

)
X0 •Z0 + Xk •Zk

= ρpd.

This contradicts to assumption (1.13), and we have shown assertion (e).

1.3 TEST PROBLEMS.

We present 7 types of semidefinite programs in this section, and we show numerical results on those problems
in the next two sections.
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The first example [23] is the standard form SDP (1.1) with dense data matrices Ai ∈ Sn (1 ≤ i ≤ m).
Using the standard normal distribution N (0, 1), we generate each element of Ai (1 ≤ i ≤ m). Then we
choose A0 ∈ Sn and b ∈ Rm so that the SDP (1.1) has an interior feasible solution.

1.3.2 Norm Minimization Problem.

Let F i ∈ Rq×r (0 ≤ i ≤ p). The norm minimization problem [23] is defined as:

minimize

∥∥∥∥∥F 0 +
p∑

i=1

F iyi

∥∥∥∥∥
subject to yi ∈ R (1 ≤ i ≤ p).

Here ‖C‖ denotes the 2-norm of C, i.e., ‖C‖ = max‖u‖=1 ‖Cu‖ = the square root of the maximum
eigenvalue of CT C. We can reduce this problem to an SDP:

maximize −yp+1

subject to
p∑

i=1

(
O F T

i
F i O

)
yi +

(
I O
O I

)
yp+1 +

(
O F T

0
F 0 O

)
� O.

Thus if we take

m = p + 1, n = r + q, A0 =
(

O F T
0

F 0 O

)
,

Ai =
(

O −F T
i−F i O

)
, bi = 0 (1 ≤ i ≤ p),

Ap+1 =
( −I O

O −I

)
, bp+1 = −1,

then we can reformulate the problem as the dual of the standard form SDP (1.1).

1.3.3 Chebyshev Approximation Problem for a Matrix.

This problem is a special case of the norm minimization problem above. Given a real square matrix
F ∈ Rp×p, the problem is formulated as:

minimize

∥∥∥∥∥∥F r +
r∑

j=1

xjF
j−1

∥∥∥∥∥∥ subject to x ∈ Rr,

where we assume that F0 = I. It is known that the set {I , F1, . . . , F r} does not constitute a well dis-
tributed matrix basis in Rp×p. We used an orthonormalized basis {Q1, Q2, . . . , Qr+1} instead of the set
{I, F 1, . . . , F r} to obtain a better convergence and numerical stability. This basis is derived by a mod-
ified Gram-Schmidt orthonormalization procedure with respect to the matrix inner product from the set
{I, F 1, . . . , F r}. This was suggested in [23, Section 5] (see also [24]), and we used the MATLAB function
“chebymat.m” contained in the SDPT3 package to generate such Chebyshev approximation problems for
our numerical experiments.

1.3.4 Semidefinite Program Arising from Control and System Theory.

Let P ∈ R�×�, Q ∈ R�×k and R ∈ Rk×�. We consider a semidefinite program of the form

maximize λ

subject to
( −P T S − SP −RT DR −SQ

−QT S D

)
� λI , S � λI ,



10where the minimization is taken over the k×k diagonal matrix D = diag(d1, d2, . . . , dk), the 	×	 symmetric
matrix S ∈ S � and the real number λ. This problem arises from an investigation into the existence of an
invariant ellipsoid for the linear system with uncertain, time-varying, unity-bounded, diagonal feedback

dx(t)
dt

= Px(t) + Qu(t), y(t) = Rx(t), |ui(t)| ≤ yi(t) (1 ≤ i ≤ k).

See [25] for more details.

We can reformulate the semidefinite program above as the dual problem of the standard form SDP (1.1)
with m = 	(	 + 1)/2 + k + 1 and n = 2	 + k. We used randomly generated data matrices P , Q, and R for
our numerical experiments.

1.3.5 Semidefinite Programming Relaxation of Maximum Cut Problem.

Let G = (V, E) be a complete undirected graph with a vertex set V = {1, 2, . . ., n} and an edge set
E = {(i, j) : i, j ∈ V, i < j}. We assign a weight Cij = Cji to each edge (i, j) ∈ E. The maximum cut
problem is to find a partition (L, R) of V that maximizes the cut c(L, R) =

∑
i∈L,j∈R Cij . Introducing a

variable vector u ∈ Rn, we can formulate the problem as a nonconvex quadratic program:

maximize
1
2

∑
i<j

Cij(1− uiuj) subject to u2
i = 1 (1 ≤ i ≤ n).

Here each feasible solution u ∈ Rn of this problem is corresponding to a cut (L, R) with L = {i ∈ V : ui =
−1} and R = {i ∈ V : ui = 1}. If we define C to be the n × n symmetric matrix with elements Cji = Cij

((i, j) ∈ E) and Cii = 0 (1 ≤ i ≤ n), and the n × n symmetric matrix A0 ∈ Sn by A0 = diag(Ce) − C,
where e ∈ Rn denotes the vector of ones and diag(Ce) the diagonal matrix of the vector Ce ∈ Rn, we can
rewrite the quadratic program above as

minimize −xT A0x subject to x2
i = 1/4 (1 ≤ i ≤ n).

If x ∈ Rn is a feasible solution of the latter quadratic program, then the n × n symmetric and positive
semidefinite matrix X whose (i, j)th element Xij is given by Xij = xixj satisfies A0 •X = xT A0x and
Xii = 1/4 (1 ≤ i ≤ n). This leads to the following semidefinite programming relaxation of the maximum
cut problem:

minimize −A0 •X
subject to Eii •X = 1/4 (1 ≤ i ≤ n), X � O.

Here Eii denotes the n×n symmetric matrix with (i, i)th element 1 and all others 0. See [11] and references
therein for more details.

1.3.6 Semidefinite Programming Relaxation of Graph Equipartition Problem.

Let G = (V, E) be a complete undirected graph with a vertex set V = {1, 2, . . . , n}, an edge set E = {(i, j) :
i, j ∈ V, i < j} and weights Cij = Cji ((i, j) ∈ E). We assume that n is an even number. The graph
equipartition problem is to find a uniform partition (L, R) of V , i.e., a partition (L, R) of V with the same
cardinality |L| = |R| = n/2, that minimizes the cut c(L, R) =

∑
i∈L,j∈R Cij . This problem is formulated as

a nonconvex quadratic program:

minimize
1
2

∑
i<j

Cij(1− uiuj)

subject to (
∑n

i=1 ui)
2 = 0, u2

i = 1 (1 ≤ i ≤ n).

As in the maximum cut problem, we can derive a semidefinite programming relaxation of the graph equipar-
tition problem:

minimize A0 •X
subject to Eii •X = 1/4 (1 ≤ i ≤ n), E •X = 0, X � O.

}
(1.16)

Here A0 and Eii (1 ≤ i ≤ n) are the same matrices as in the previous section, and E denotes the n × n
matrix with all elements 1. See [11, 12] and references therein for more details.
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Let G = (V, E) be an undirected graph with a vertex set V = {1, 2, . . . , n} and an edge set E ⊂ {(i, j) :
i, j ∈ V, i < j}. A subset C of V is said to be a clique of G if (i, j) ∈ E for every pair of distinct i, j ∈ C
such that i < j. The maximum clique problem is to find a clique of maximum cardinality in G. It is
well-known that the following SDP provides an upper bound (the Lovász number of a graph G) for the
cardinality of the maximum clique of G.

minimize E •X
subject to Eij •X = 0 ((i, j) /∈ E),

I •X = 1, X � O.

}
(1.17)

Here E denotes the n× n matrix of 1’s and Eij the n× n matrix with the (i, j)th and (j, i)th element 1/2
and all other elements 0. See [11] and references therein for more details.

Note that this semidefinite program has m = n(n−1)/2−|E|+1 equality constraints, where |E| denotes
the cardinality of the edge set E. Hence the number m of equality constraints can be of order n2 and
much larger than the size n of the variable matrix X . On the other hand, all the constraint matrices Eij

((i, j) /∈ E) and I are sparse; Eij ((i, j) /∈ E) have only two nonzero elements, and I has n nonzero elements.

1.4 PRELIMINARY NUMERICAL EXPERIMENTS.

In this section, we compare four computer programs that solve semidefinite programs as well as the per-
formance of the three search directions. The analysis of this section will serve as a base of justification for
the choice of the software, SDPA and SDPT3, and the search direction, the HRVW/KSH/M direction, that
will be employed in Section 5. We report numerical results of the 7 types of test problems presented in the
previous section.

Throughout our numerical experiments, we adopted the relative gap

|P −D|
max{1.0, (|P |+ |D|)/2}

for the stopping criteria; when the relative gap got smaller than a prescribed accuracy ε∗, we stopped the
iteration of SDPA, SDPT3 and CSDP. Here P and D denote the primal and the dual objective values,
respectively. All numerical experiments in this section were executed on DEC Alpha Station (CPU Alpha
21164-400MHz with 512MB memory) under DIGITAL UNIX V4.0. First, we decide which search direction
we employ in our numerical experiments.

Table 1.1 Performance comparison (SDPA:time) among HRVW/KSH/M, NT and AHO search directions.

Problem type size time(sec.)

n m KSH NT AHO

Random SDP 10 10 0.1 0.1 0.2
Random SDP 20 20 0.5 0.6 1.0
Random SDP 50 50 10.4 11.2 29.4

Norm minimization 100 100 149.7 154.6 471.0
Chebyshev approx. 100 100 159.3 161.6 533.0

Control and system theory 60 231 40.2 43.1 270.6
Maximum cut 100 100 10.3 16.5 242.1

Graph equipartition 100 101 11.7 20.7 375.9
Maximum clique 100 1024 172.1 173.0 3511.4

Tables 1.1, 1.2 and 1.3 show the performance comparisons among the HRVW/KSH/M, the NT and the
AHO directions when we use SDPA. The required number of iterations when we employ the HRVW/KSH/M
direction is almost the same as when we employ the NT direction. Furthermore, the HRVW/KSH/M
direction is faster than the NT direction on all problems. We can also observe the same tendency for the
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Table 1.2 Performance comparison (SDPA:iterations) among HRVW/KSH/M, NT and AHO search directions.

Problem type size iterations

n m KSH NT AHO

Random SDP 10 10 15 15 14
Random SDP 20 20 14 14 14
Random SDP 50 50 14 14 14

Norm minimization 100 100 17 17 16
Chebyshev approx. 100 100 18 18 18

Control and system theory 60 231 35 34 50
Maximum cut 100 100 15 15 14

Graph equipartition 100 101 15 17 21
Maximum clique 100 1024 17 17 17

Table 1.3 Performance comparison (SDPA:relative gap) among HRVW/KSH/M, NT and AHO search directions.

Problem type size relative gap

n m KSH NT AHO

Random SDP 10 10 5.05e-09 1.23e-09 9.43e-09
Random SDP 20 20 2.68e-09 2.04e-09 2.12e-09
Random SDP 50 50 2.40e-09 1.56e-09 1.34e-09

Norm minimization 100 100 1.06e-09 3.86e-09 7.91e-09
Chebyshev approx. 100 100 1.59e-09 4.57e-09 1.20e-09

Control and system theory 60 231 1.91e-07 1.21e-07 1.85e-06
Maximum cut 100 100 1.55e-09 4.26e-09 9.42e-09

Graph equipartition 100 101 5.33e-07 2.59e-06 4.19e-07
Maximum clique 100 1024 2.50e-09 5.87e-09 2.33e-09

Table 1.4 Performance comparison (time) among SDPA, SDPT3, CSDP and SDPSOL.

Problem type size time(sec.)

n m SDPA SDPT3 CSDP SDPSOL

Random SDP 10 10 0.1 0.9 0.2 0.6
Random SDP 20 20 0.5 2.9 3.9 27.1
Random SDP 50 50 10.4 32.6 159.0 7147.5

Norm minimization 100 100 149.7 350.5 3649.4 -
Chebyshev approx. 100 100 159.3 384.2 4058.8 -

Control and system theory 60 231 40.2 325.2 * -
Maximum cut 100 100 10.3 65.8 12.7 -

Graph equipartition 100 101 11.7 89.2 * -
Maximum clique 100 1024 172.1 3934.9 178.1 -
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Table 1.5 Performance comparison (iterations) among SDPA, SDPT3, CSDP and SDPSOL.

Problem type size iterations

n m SDPA SDPT3 CSDP SDPSOL

Random SDP 10 10 15 11 15 16
Random SDP 20 20 14 11 14 17
Random SDP 50 50 14 10 15 20

Norm minimization 100 100 17 13 16 -
Chebyshev approx. 100 100 18 15 18 -

Control and system theory 60 231 35 21 * -
Maximum cut 100 100 15 12 15 -

Graph equipartition 100 101 15 15 * -
Maximum clique 100 1024 17 15 16 -

Table 1.6 Performance comparison (relative gap) among SDPA, SDPT3, CSDP and SDPSOL.

Problem type size relative gap

n m SDPA SDPT3 CSDP SDPSOL

Random SDP 10 10 5.05e-09 2.71e-08 4.06e-09 2.47e-07
Random SDP 20 20 2.68e-09 2.34e-09 7.66e-09 8.39e-07
Random SDP 50 50 2.40e-09 5.35e-06 4.16e-09 3.26e-06

Norm minimization 100 100 1.06e-09 3.83e-08 6.02e-09 -
Chebyshev approx. 100 100 1.59e-09 2.97e-10 1.37e-09 -

Control and system theory 60 231 1.91e-07 1.18e-05 * -
Maximum cut 100 100 1.55e-09 3.08e-06 5.45e-09 -

Graph equipartition 100 101 5.33e-07 1.65e-03 * -
Maximum clique 100 1024 2.50e-09 6.26e-09 4.47e-09 -



14HRVW/KSH/M direction using SDPT3 [22, 23] excepting the ETP Problem. Monteiro and Zanjácomo
[18] showed similar numerical results. Therefore, we mainly focus our attention on the HRVW/KSH/M
direction in this paper.

As we have already seen in Section 1, there exists some MATLAB implementations besides SDPT3.
Also, there are some other full implementations, for example, SDPSOL and CSDP, which are written in
C language. Table 1.4, 1.5 and 1.6 show the performance comparisons among SDPA, SDPT3, CSDP and
SDPSOL. It must be noted that SDPSOL is the only software that does not have the HRVW/KSH/M
direction available, and we could not adopt the same initial point as we have not had access to the source
code. However these details do not have significant importance in the comparison we made. SDPSOL can
solve only small scale problems because it requires much memory compared to other software. SDPA and
CSDP are faster when they solve the sparse problems, but we encountered some numerical instability (see
the problems with ∗ in Table 1.4, 1.5 and 1.6) using CSDP. Therefore, we employ SDPT3 in this paper as
it has numerical stability although it can not solve sparse problems rapidly.

1.5 NUMERICAL RESULTS.

In this section, we perform the main numerical experiments employing the HRVW/KSH/M search direction
for SDPA and SDPT3. These choices were made judging from the preliminary numerical experiments of
the previous section. We report numerical results of the 7 types of test problems presented in Section 3.
These problems are roughly classified into 3 groups:

dense problems — randomly generated semidefinite programs (Section 3.1),
norm minimization problems (Section 3.2),
Chebyshev approximation problems (Section 3.3),

mildly dense problems — semidefinite programs from control and system theory
(Section 3.4)

sparse problems — maximum cut problems (Section 3.5),
graph equipartition problems (Section 3.6),
maximum clique problems (Section 3.7).

We address three main issues.

The first issue is an evaluation of the total performance of SDPA to know how large problems SDPA can
solve within a reasonable time. We report the number of iterations and the computation time required for
an approximate solution with a relative duality gap less than a given accuracy ε∗ between 10−5 and 10−8.

The second issue is a comparison between SDPA [6] and SDPT3 [23] through numerical experiments. Both
software packages are based on the Mehrotra-type primal-dual predictor-corrector interior-point method
although some parameters to control predictor search directions and step lengths are slightly different. To
make the comparison fair, we utilized common initial points, the HRVW/KSH/M search direction (although
the AHO and the NT search directions are available both in SDPA and SDPT3), and a common stopping
criterion for both SDPA and SDPT3. Their major differences are

(a) The programming languages are different; SDPA is written in C++ while SDPT3 is written in
MATLAB.

(b) SDPA incorporates a sparse matrix data structure and the efficient methods referred in Section 2 for
computing search directions.

SDPA is a few times faster than the SDPT3 when they are applied to dense problems. This difference is
mainly due to (a), and does not reflect the computational efficiency of the algorithms used in those software
packages. In dense cases, however, the sparse data matrix structure makes the computation less efficient
than the standard dense matrix structure. When SDPA is applied to mildly dense problems and sparse
problems, SDPA is much faster than the SDPT3 in computation time. This is due to the reason (b).

The third issue is an analysis of SDPA. We focus our attention on some major time-consuming parts of
SDPA:

(I) computation of the m×m dense positive definite matrix B (see Section 2.1).

(II) the LDLT factorization of B for solving the system (1.5) of linear equations.



NUMERICAL EVALUATION OF SDPA 15(III) computation of dX and dZ (see (1.6)).

(IV) computation of the minimum eigenvalues of X−1dX , Z−1dZ and XZ (see Section 2.2).

Other parts of SDPA which are not included in (I), (II), (III) and (IV) are the Cholesky factorization of X
and Z, the computation of Z−1, the computation of the primal and dual step lengths, etc..

We remark that (I), (II), (III) and (IV) would require O(mn3 + m2n2), O(m3), O(n3 + mn2) and O(n3)
arithmetic operations, respectively, if we performed dense computation neglecting possible sparsity in data
matrices. The most time consuming part among (I), (II), (III) and (IV) varies with the test problems to
be solved. Part (I) requires about 80 – 95 percent of the computation time for dense and mildly dense
problems, while part (I) makes up less than 10 percent and some other parts become more important for
sparse problems.

All numerical experiments in this section were executed on DEC Alpha Server 8400 (CPU Alpha 21164-
437MHz with 8GB memory) under DIGITAL UNIX V3.2G.

1.5.1 Randomly Generated Semidefinite Program.

We took an initial point (X 0, y0, Z0) of the form (100I,0, 100I) for all randomly generated semidefinite
programs. Table 1.7 and 1.8 summarize numerical results. Recall that all A i’s are dense matrices. We note
that the number of iterations does not seem to depend significantly on n and m. † means that the problem
is primal or dual infeasible. In these cases, SDPA detected that the problem has no feasible solution in a
prescribed region (see Section 2.4) within a small number of iterations compared with SDPT3. SDPA is
about 2 – 4 times as fast as SDPT3 when m/n = 1, and even faster than SDPT3 when the ratio m/n gets
larger. We also observe that SDPA worked as stable and efficient (measured in terms of the number of
iterations) as SDPT3.

Table 1.7 Numerical results on randomly generated semidefinite programs.

time(sec.) iterations relative gap

n m SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

10 10 0.1 0.4 9 9 4.10e-09 7.05e-09
20 20 0.4 1.7 10 9 7.57e-10 6.14e-09
† 20 20 0.2 2.7 2 10 2.00e+00 3.11e+06

25 25 0.8 2.4 9 9 9.02e-09 7.15e-10
30 30 1.5 4.2 10 9 3.98e-09 2.00e-09
† 30 30 0.2 5.8 4 9 1.88e+00 3.28e+06

50 50 10.9 35.6 10 9 6.61e-09 5.83e-09
† 50 50 0.6 62.5 2 20 1.94e+00 6.80e+06

50 200 65.9 285.1 11 10 2.81e-09 7.16e-09
100 100 129.3 367.8 10 10 8.90e-09 3.39e-09
100 200 433.3 2069.6 13 12 1.89e-09 6.19e-09
200 50 552.9 896.2 11 10 7.60e-10 9.10e-09
200 100 1130.1 2220.9 11 11 2.52e-09 4.96e-10

From Table 1.8, we know that part (I) consisting of the computation of the m ×m matrix B occupied
over 90 percent of the total computation time.

1.5.2 Norm Minimization and Chebyshev Problems.

For each norm minimization problem, we took a feasible initial point (X 0, y0, Z0) such that

y0
i = 0 (1 ≤ i ≤ p = m − 1),

y0
m = 1.1‖A0‖,
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Table 1.8 Computation time of major parts of SDPA applied to randomly generated semidefinite programs.

n = 100, m = 100 n = 100, m = 200

part time(sec.) ratio(%) time(sec.) ratio(%)

(I) 116.80 90.32 413.07 95.34
(II) 0.05 0.04 0.47 0.11
(III) 2.60 2.01 5.88 1.36
(IV) 2.70 2.09 3.43 0.79

all other parts 7.17 5.54 10.43 2.41

Z0 =
(

I O
O I

)
y0

m +
(

O F T
0

F 0 O

)
� O,

X0 =
1
n

(
I O
O I

)
.

Recall that a Chebyshev problem is a special case of norm minimization problems. We converted each
Chebyshev problem into a norm minimization problem, and then applied the same initial point as above to
the resultant norm minimization problem. Table 1.9, 1.10 and 1.11 summarize numerical results. Note that
about 50% of the elements of data matrices Ai (1 ≤ i ≤ p) are nonzero. But the percentage of part (I) with
respect to the total computation time is slightly less than in the case of randomly generated semidefinite
programs of Section 5.1; it is still more than 85%.

Table 1.9 Numerical results on norm minimization problems.

time(sec.) iterations relative gap

n m SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

20 10 0.1 0.7 9 9 1.11e-09 1.45e-09
40 20 1.1 5.4 9 9 3.90e-09 4.99e-09
50 25 3.5 8.3 9 9 8.24e-09 2.65e-09
60 30 5.4 15.9 9 9 3.26e-09 2.38e-09

100 50 38.3 165.7 10 10 6.30e-09 3.99e-10
200 100 721.2 1868.4 11 10 9.09e-10 9.65e-10

Table 1.10 Numerical results on Chebyshev approximation problems.

time(sec.) iterations relative gap

n m SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

20 10 0.1 0.8 9 9 9.46e-10 6.67e-09
40 20 1.1 6.0 9 9 3.49e-09 4.45e-09
50 25 3.4 11.2 9 9 1.82e-09 8.20e-09
60 30 5.9 23.0 10 10 8.76e-10 1.14e-10

100 50 41.3 163.6 11 10 2.18e-09 3.72e-09
200 100 713.3 2613.3 11 10 6.86e-10 2.77e-09
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Table 1.11 Computation time of major parts of SDPA applied to NMP (norm minimization problems) and CAP (Chebyshev
approximation problems).

NMP, n = 200, m = 100 CAP, n = 200, m = 100

part time(sec.) ratio(%) time(sec.) ratio(%)

(I) 627.80 87.05 620.15 86.94
(II) 0.02 0.00 0.08 0.00
(III) 15.12 2.10 15.08 2.11
(IV) 24.82 3.44 24.88 3.49

all other parts 53.44 7.41 53.1 7.44

1.5.3 Control and System Theory Problem.

We restrict ourselves to particular cases where k = l takes values varying from 5 through 55 as shown
in Table 6. We took (X 0, y0, Z0) = (10iI,0, 10iI) for an infeasible initial point, where we chose i = 4
or 5 depending on each test problem. Comparing with other types of test problems, we notice that the
number of iterations is larger. This phenomenon occurred because the primal feasible region is narrow, so
that both algorithms need much time to reach the feasible region. Particularly, SDPT3 stopped with the
message “lack of progress in corrector” and “lack of progress in predictor” in the cases of k = 	 = 20 and
25, respectively, before it would attain a relative gap less than 10−5 (see the numbers with  in Table 1.12).
In most of the cases, however, we observed that once SDPA and SDPT3 moved into the feasible region,
they attained an approximate optimal solution with a given accuracy ε∗ in a few steps.

Table 1.12 Numerical results on control and system theory problems

time(sec.) iterations relative gap

k = l n m SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

5 15 21 0.1 2.4 21 18 1.36e-07 4.21e-07
10 30 66 1.3 25.7 22 20 2.35e-07 8.10e-07
15 45 136 8.0 106.5 26 23 6.43e-07 3.97e-06
20 60 231 25.4 355.3 28 21 8.38e-07 1.18e-05 �

25 75 351 114.9 1059.2 31 22 3.74e-08 2.02e-05 �

30 90 496 221.0 - 32 - 6.67e-06 -
35 105 666 457.0 - 27 - 2.35e-06 -
40 120 861 630.1 - 26 - 8.42e-06 -
45 135 1081 1594.8 - 28 - 7.33e-06 -
50 150 1326 3217.5 - 37 - 6.21e-06 -
55 165 1596 6903.0 - 35 - 9.91e-06 -

Table 1.13 gives the CPU time required in major parts of SDPA applied to the two largest cases shown in
Table 12. Compared with the previous three problems (see Tables 1.8 and 1.11), part (II) consisting of the
LDLT factorization of the m ×m matrix B now constitutes a much larger percentage of the computation
time. This is because m is about 9 – 10 times larger than n in these two cases.

1.5.4 Maximum Cut Problem and Graph Equipartition Problem.

We took a feasible initial point (X 0, y0, Z0) such that

X0 = Diag(b),
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Table 1.13 Computation time of major parts of SDPA applied to control and system theory problems.

n = 150, m = 1326 n = 165, m = 1596

part time(sec.) ratio(%) time(sec.) ratio(%)

(I) 2553.15 79.35 5582.65 80.87
(II) 572.33 16.86 1194.02 17.30
(III) 9.60 0.30 16.28 0.24
(IV) 11.10 0.34 14.32 0.21

all other parts 71.35 1.55 95.76 1.39

y0 = −1.1 · abs(A0) · e,

Z0 = A0 −Diag(y0).

in maximum cut problems, while we took an initial point (X 0, y0, Z0) of the form (100I,0, 100I) in graph
equipartition problems. Tables 1.14, 1.15 and 1.16 show numerical results.

Table 1.14 Numerical results on maximum cut problems.

time(sec.) iterations relative gap

n SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

10 0.1 0.4 8 8 2.08e-09 5.51e-10
20 0.1 0.9 9 8 1.67e-09 9.16e-09
25 0.2 1.5 9 9 3.61e-09 5.68e-09
30 0.3 2.5 10 10 3.50e-09 2.95e-10
50 1.5 7.9 9 9 3.21e-09 3.66e-09

100 9.0 73.4 10 11 1.57e-09 2.54e-10
150 40.3 277.6 10 10 1.77e-09 1.89e-09
200 92.8 865.2 11 10 7.12e-10 7.13e-09
250 311.6 - 13 - 2.95e-09 -
500 2998.6 - 16 - 1.22e-09 -

1000 69490.1 - 16 - 3.59e-08 -
1250 111615.9 - 18 - 5.90e-09 -

Both maximum cut and graph equipartition problems are sparse problems. In particular, all Ai (1 ≤ i ≤
m) of the maximum cut problems have only one nonzero element, while exactly one Ai is a dense matrix
having n2 nonzero elements and all other Ai’s involve one nonzero element in graph equipartition problems.
For such sparse problems, the efficient method [7] referred in Section 2.1 is expected to work effectively.
In fact, we observe that SDPA solved both types of problems much faster than SDPT3. We also see in
Table 1.16 that part (I) is less than 1% of the total computation time in the maximum cut problem and it
is less than 7% in the graph equipartition problem.

1.5.5 Maximum Clique Problem.

SDPA started from the initial point (X0, y0, Z0) = (100I,0, 100I) in all maximum clique problems. Ta-
ble 1.17 and 1.18 show numerical results. Recall that the number of constraints m is corresponding to

“the number n(n− 1)/2− |E| of node pairs having no edge” + 1.

This implies that m can be of O(n2). We see from Table 1.17 that the computation time strongly depends
on m. In Table 18, we see that part (II) depends more heavily on m than part(I).
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Table 1.15 Numerical results on graph equipartition problems.

time(sec.) iterations relative gap

n SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

10 0.1 0.5 11 12 2.47e-06 9.83e-06
20 0.2 1.7 12 14 2.24e-06 4.38e-06
25 0.3 2.5 12 13 7.22e-06 7.23e-06
30 0.5 4.1 12 13 3.53e-06 4.36e-06
50 2.3 13.7 12 13 8.02e-07 4.31e-06

100 12.5 104.6 12 13 6.18e-06 8.67e-06
150 52.1 433.0 11 13 5.58e-06 4.25e-06
200 115.1 1174.1 12 12 2.39e-06 9.05e-06
250 418.6 - 15 - 2.61e-06 -
500 3197.9 - 15 - 1.22e-09 -

1000 63130.7 - 21 - 4.80e-06 -
1250 112375.7 - 15 - 4.16e-05 -

Table 1.16 Computation time of major parts of SDPA applied to maximum cut problems (MCP) and graph equipartition
problems (GPP).

(MCP) n = 1250 (GPP) n = 1250

part time(sec.) ratio(%) time(sec.) ratio(%)

(I) 26.07 0.02 7570.17 6.74
(II) 197.68 0.18 171.43 0.15
(III) 20469.43 18.34 17803.15 15.84
(IV) 16644.95 14.91 14686.77 13.07

all other parts 74277.80 66.55 72144.17 64.20

Table 1.17 Numerical results on maximum clique problems.

time(sec.) iterations relative gap

n m SDPA SDPT3 SDPA SDPT3 SDPA SDPT3

50 132 2.8 49.8 15 15 7.43e-09 6.37e-10
50 253 4.8 147.9 15 14 3.85e-09 4.91e-09
50 597 20.8 716.7 14 13 5.72e-10 4.17e-09

100 539 30.2 1102.0 16 14 9.73e-10 6.33e-09
100 1024 143.0 4298.9 16 15 3.49e-09 6.26e-09
150 562 84.9 - 16 - 7.80e-09 -
150 1102 215.2 - 16 - 1.19e-09 -
200 622 191.7 - 19 - 7.89e-09 -
200 993 237.4 - 16 - 2.63e-09 -
250 652 492.7 - 18 - 8.09e-09 -
250 973 528.4 - 17 - 1.55e-09 -
300 944 749.3 - 18 - 1.81e-09 -
300 1401 1041.9 - 18 - 8.42e-10 -
300 4568 19028.7 - 19 - 3.55e-09 -
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Table 1.18 Computation time of major parts of SDPA applied to maximum clique problems.

n = 300, m = 944 n = 300, m = 4568

part time(sec.) ratio(%) time(sec.) ratio(%)

(I) 16.63 2.22 513.05 2.70
(II) 70.63 9.43 17773.65 93.40
(III) 104.37 13.93 107.38 0.56
(IV) 137.85 18.34 145.95 0.77

all other parts 419.85 54.99 488.67 2.57

1.6 CONCLUDING REMARKS.

A large scale sparse SDP means that m and/or n are large and that all or most of the data matrices Ai

(0 ≤ i ≤ m) are sparse. Here m denotes the number of equality constraints and n the size of the symmetric
variable matrix of primal problem P in the standard form (1.1). For simplicity of discussion, we assume
throughout this section that all data matrices Ai (1 ≤ i ≤ m) have at most f nonzeros, where f is a small
positive integer, but A0 can be dense. In such a case, SDPA effectively utilizes the sparsity of data matrices
Ai (1 ≤ i ≤ m) for

(I) computation of the m×m dense positive definite matrix B

to reduce the number of arithmetic operations to O(m2f2) by applying formula F 3 proposed in the paper
[7], while SDPA still needs O(m3), O(n3 + mf) and O(n3) arithmetic operations for

(II) the LDLT factorization of B,

(III) computation of dX and dZ, and

(IV) computation of the minimum eigenvalues of X−1dX , Z−1dZ and XZ,

respectively. We performed numerical experiments for investigating how the major time-consuming parts
of SDPA vary with the problem size, the number of equality constraints and the sparsity of data matrices.

When the size m of the dense positive definite matrix B is large, say, more than several thousands, it
is difficult to perform (II), and even to store the entire matrix B in memory. A standard technique to
resolve such a difficulty is to use the conjugate gradient method to solve the system Bdy = g of equations
approximately; it is carried out without storing the entire matrix B (see Concluding Remark (C) of [7],
also [13, 16, 26, 27]). We report some preliminary but promising numerical results on the use of the
conjugate gradient method in Table 1.19. We solved SDP relaxations of maximum clique problems with
n = 100, 200, 400, 500 on DEC Alpha (CPU 21164-300MHz with 256MB memory). Recall that n is
the number of nodes and m “the number of node pairs having no edge” +1. The columns in “LDLT ” of
Table 1.19 denote the number of iterations of SDPA and the total CPU time in seconds when we solved
Bdy = g by the LDLT factorization, while the columns in “CG” denote the number of (major) iterations
of SDPA, the total CPU time in seconds and the number of the conjugate gradient iterations at the last
(major) iteration of SDPA when we solved Bdy = g approximately by the conjugate gradient method
with simple diagonal scaling. In all cases, we stopped the iteration when the duality gap (|P−D|) got less
than 0.1. We see in Table 1.19 that the use of the conjugate gradient method for problems with n = 100
worked more and more efficiently than the use of LDLT method as m gets larger. In cases where n ≥ 200
and m ≥ 8006, we could not perform the LDLT factorization of B because we could not store the entire
matrix B in memory. Overall, the conjugate gradient method worked very efficiently. We should mention,
however, that we encountered some difficulty in using the conjugate gradient method to compute more
accurate approximate solutions with duality gap significantly less than 0.1.

Parts (III) and (IV) require O(n3 + mf) and O(n3) arithmetic operations, respectively. Therefore they
become the most expensive parts when n gets larger, and solving a semidefinite program via SDPA seems
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Table 1.19 Comparison between the use of the conjugate gradient method and the use of the LDLT factorization in SDPA
applied to maximum clique problems.

LDLT CG
n m iterations time(sec.) iterations time(sec.) CG iterations

100 539 7 13.3 10 24.7 336
100 1024 6 75.7 9 22.1 319
100 2029 6 580.5 9 26.1 332
100 2513 6 1116.1 8 17.7 208

200 1977 7 662.6 10 209.8 385
200 4050 7 5418.6 9 186.3 381
200 8006 9 272.1 540
200 9957 9 258.0 488

400 16077 10 3618.2 913
400 24079 10 4322.4 1114
400 32116 10 2302.5 525
400 40094 9 2994.6 641

500 25107 10 6646.0 798
500 37596 10 6973.3 838
500 50071 10 8339.8 1034
500 62499 10 6152.9 694

impractical when n exceeds several thousands; for example, the graph equipartition problem with the size
n = 1250 given in Table 1.15 required more than 31 hours of computation time.

Sparsity is one particular form of problem structure we exploit here because it is an important feature
arising from SDP relaxation in combinatorial optimization and it has a straightforward tractable structure.
However, we need an accumulation of more numerical results and knowledge for exploiting other problem
structures and we consider them for future work.

Suppose now that A0 is also a sparse matrix having at most f0 = O(n) nonzero elements, n is large and
that m is of O(n); the SDP relaxation of the maximum cut problem of a sparse graph is such a case. Then
the n × n dual variable symmetric matrix Z = A0 −

∑m
i=1 Aiyi turns out to be a sparse matrix having

O(f0 + mf) nonzeros although the n × n primal variable symmetric matrix X is generally dense. Hence,
working only on the dual space, i.e., the space of (y, Z) ∈ Rm × Sn, makes it possible to fully exploit
the sparsity. This observation is due to Yinyu Ye et al. who suggested a dual potential reduction method
for the SDP relaxation of the maximum cut problem of a sparse graph. They require only about 2 hours
of computation time when they solve a problem with size n = 5000 using a PC-GATEWAY2000 (CPU
Pentium-233MHz with 64MB memory), while we require more than 31 hours of computation time when we
solve the problem with size n = 1250. See [4].

The SDP relaxation (1.16) of the graph equipartition problem involves n × n matrices E ii (1 ≤ i ≤ n)
having one nonzero and the n× n matrix E having all elements 1 in the constraint. Although the matrix
E is dense, it is a rank 1 matrix of the form E = eeT , where e denotes the n-dimensional vector of 1’s.
Also Eij appeared in the semidefinite programming relaxation (1.17) of the maximum clique problem is a
rank 2 matrix of the structure Eij = eie

T
j +eje

T
i , where ek denotes the n dimensional unit vector with the

kth element 1 and all other elements 0. In general, semidefinite programming relaxations of combinatorial
optimization problems involve many rank 1 and rank 2 matrices in their constraints. When a data matrix
Ai is not sparse but is a low rank matrix of the structure Ai =

∑q
k=1(akbT

k + bkaT
k ) for some ak, bk ∈ Rn

(1 ≤ k ≤ q) and some small positive integer q, we can utilize such a low rank structure to make the
computation of the matrix B more efficient. This observation is due to C. Helmberg and S. Karisch. See
[10]. Other papers also observed the importance of exploiting different kinds of structure [8, 26].
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