
Implementation and Evaluation of SDPA 6.0
(SemiDefinite Programming Algorithm 6.0)

Makoto Yamashtia†, Katsuki Fujisawa∗ and Masakazu Kojima‡

Abstract. The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general
SDPs (SemiDefinite Programs). It is written in C++ with the help of LAPACK for numerical linear
algebra for dense matrix computation. The purpose of this paper is to present a brief description of the
latest version of the SDPA and its high performance for large scale problems through numerical experiment
and comparison with some other major software packages for general SDPs.

Key words. Semidefinie Program, Interior-Point Method, Optimization, Software, Numerical Exper-
iment.

† Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan
e-mail: Makoto.Yamashita@is.titech.ac.jp

∗ Department of Mathematical Sciences
Tokyo Denki University
Hatoyama, Saitama 350-0394, Japan
e-mail: fujisawa@r.dendai.ac.jp

‡ Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan
e-mail: kojima@is.titech.ac.jp

1 Introduction

SDP (Semidefinite Program) is an extension of LP (Linear Program) in the Euclidean space to the space of
symmetric matrices. We start from an LMI (Linear Matrix Inequality) as an example of SDPs arising from
the system and control theory [4]. Let Sn be the set of n×n symmetric matrices, and let Ai ∈ Sn (0 ≤ i ≤ p).
We use the notation X º O to denote that X ∈ Sn is positive semidefinite. An LMI is defined as

A(x) = A0 +
p∑

i=1

xiAi º O,

where x = (x1, x2, . . . , xp) is a vector variable in Rp. We want to find an x ∈ Rp such that A(x) º O
or detect that A(x) is not positive semidefinite for any x ∈ Rp. Introducing an auxiliary variable λ, we
transform the LMI into the following SDP.

minimize λ subject to X = A0 +
p∑

i=1

xiAi + λI, X º O.

Here I denotes the n×n identity matrix. In this minimization problem, we have a linear objective function
λ over a linear constraint X = A0+

∑p
i=1 xiAi+λI and a positive semidefinite constraint X º O. Suppose

that the above SDP has a feasible solution (x̄, λ̄) with a nonpositive objective function value λ = λ̄. Then
x = x̄ satisfies the LMI. On the other hand, if the optimal value of the SDP is positive, then we know that
the LMI has no solution.

Now we introduce a standard form of SDP P, and its dual D.

P: minimize
m∑

i=1

cixi subject to X =
m∑

i=1

F ixi − F 0, X º O, X ∈ Sn.

D: maximize F 0 • Y subject to F i • Y = ci (i = 1, 2, . . . , m), Y º O, Y ∈ Sn.

(1)

Here U • V denotes the inner product of U and V in Sn, i.e., U • V =
∑n

i=1

∑n
j=1 U ijV ij . We call

(x,X) a primal feasible solution of the SDP if (x, X) satisfies the constraints of P, and (x, X) a primal
interior feasible solution if X Â O in addition to the feasibility. If a primal feasible solution (x, X) attains
the minimum objective value

∑m
i=1 cixi of P among all primal feasible solutions, we call (x,X) a primal

optimal solution. We define a dual feasible solution, a dual interior feasible solution, and dual optimal
solution similarly. We say that (x, X, Y) is a feasible solution (an interior feasible solution, or an optimal
solution, respectively) if (x, X) is a primal feasible solution (a primal interior feasible solution, or a primal
optimal solution, respectively) and Y is a dual feasible solution (a dual interior-feasible solution or a dual
optimal solution, respectively).

SDP is not only an extension of LP but also includes convex quadratic optimization problems and some
other convex optimization problems. It has a lot of applications in various fields such as combinatorial
optimization [9], control theory [4], robust optimization [3, 24] and quantum chemistry [15, 16]. See [20, 23,
24] for a survey on SDPs and the papers in their references.

The PDIPA (primal-dual interior-point algorithm) [10, 12, 14, 17] is known as the most powerful and
practical numerical method for solving general SDPs. The method is an extension of the PDIPA [11, 19]
developed for LPs. The SDPA (SemiDefinete Programming Algorithm) presented in this paper is a PDIPA
software package for general SDPs based on the paper [7, 12]. Besides the SDPA, several software packages
for solving general SDPs, DSDP [2], CSDP [5], SeDuMi [18] and SDPT3 [21] have been released so far. They
are available at the Web site http://www-neos.mcs.anl.gov/neos/server-solvers.html. The main features of
the SDPA are:

• It exploits the sparsity of data matrices [7] to save computational time, and solves large scale SDPs
efficiently.

• The SDPA is written in C++ language, so that one can call its routines from his own C++ program.

Some numerical results of the SDPA 4.0, an old version of the SDPA with its comparison to some
other software packages including the SDPT3 and the CSDP were reported in the paper [8]. Since then,
the performance of the SDPA and those software packages has been considerably improved. In particular,

1

the SDPA 6.0 (the latest version at the moment of writing) incorporated LAPACK [1], and adopted one
dimensional array data structure to store dense matrices so as to fit to dense matrix computation using
LAPACK. These two new devices have made the SDPA much faster than the previous version (Version
5.01).

The main purpose of this paper is to present a high performance of the SDPA 6.0 in comparison to
some major software packages, the SDPT3[21], the CSDP[5] and the SeDuMi[18]. Section 2 presents an
algorithmic framework of the SDPA. Section 3 explains the usage of the SDPA shortly. Section 4 is devoted
to some numerical results on the SDPA 6.0 and its comparison to the SDPT3, the CSDP, the SeDuMi
and the SDPA 5.01 through randomly generated SDPs, large scale SDPs arising from quantum chemistry
[15, 16] and SDPLIB[6] benchmark problems. For the first two types of problems, the SDPA 6.0 exhibited
the highest performance among the software packages listed above. In particular, the SDPA 6.0 successfully
solved large scale duals SDP D of the second type, having more than m = 15000 equality constraints, which
all other software packages could not handle because of out of memory. We also observe in Section 4 that
the SDPA 6.0 and the SDPT3 worked better on SDPLIB benchmark problems than the CSDP, the SeDuMi
and the SDPA 5.01.

2 The Primal-Dual Interior-Point Algorithm of the SDPA

Suppose that the SDP (1) has an interior feasible solution. Then the KKT system (2) below gives a necessary
and sufficient condition for (x, X,Y) to be an optimal solution of the SDP (1).

X =
∑m

i=1 F ixi − F 0, F i • Y = ci (i = 1, 2, . . . , m), XY = O, X º O, Y º O (2)

Replacing the complementarity condition XY = O by a perturbed complementarity condition XY = µI
with µ > 0, we have

X =
∑m

i=1 F ixi − F 0, F i • Y = ci (i = 1, 2, . . . ,m), XY = µI, X º O, Y º O. (3)

It is known that for every µ > 0 the perturbed KKT system (3) has a unique solution (xµ, Xµ,Y µ), and
that the set C = {(xµ, Xµ,Y µ) : µ > 0} forms a smooth curve converging to a solution (x, X,Y) of the
KKT system (2), which corresponds to an optimal solution of the SDP (1), as µ → 0. We call C the central
path. By construction, we know if µ > 0 and (xµ, Xµ,Y µ) is on the central path C then µ = X • Y /n.

Roughly speaking, the SDPA starts from a given initial point (x, X, Y) satisfying X Â O and Y Â O
and numerically traces the central path C. Letting µ = β(X •Y /n), it chooses a target point (xµ, Xµ,Y µ)
on the central path C to move from the current point (x, X,Y), where β ∈ [0, 1]. Then the SDPA computes
a search direction (dx, dX, dY) to approximate the point (xµ, Xµ,Y µ), and updates the current point as
(x,X, Y) ← (x + αpdx, X + αpdX, Y + αddY), where αp and αd are primal and dual step lengths to
keep X + αpdX and Y + αddY positive definite. The SDPA repeats this procedure until it attains an
(ε̄, ε∗)-approximate solution described below.

Suppose that (x,X, Y) ∈ Rm×Sn×Sn satisfies X º O and Y º O. The SDPA employs the quantities

max

{∣∣∣∣∣[X −
m∑

i=1

F ixi + F 0]pq

∣∣∣∣∣ : p, q = 1, 2, . . . , n

}
and (4)

max {|F i • Y − ci| : i = 1, 2, . . . , m} (5)

as the primal feasibility error and the dual feasibility error, respectively. We refer to the maximum of the
primal and the dual feasibility errors as the primal-dual feasibility error or simply the feasibility error. We
say that (x, X,Y) is an ε̄-approximate feasible solution of the SDP (1) if the feasibility error is less than
ε̄, where ε̄ is a parameter whose default value is set at 1.0× 10−7 in the SDPA. Define the relative duality
gap by

|objP − objD|
max{(|objP |+ |objD|)/2.0, 1.0} (6)

Here objP denotes the primal objective function value
∑m

i=1 cixi, and objD the dual objective function
value F 0 • Y . Let ε∗ be a sufficiently small positive number; the default value of ε∗ is set at 1.0 × 10−7

2

in the SDPA. We say that (x, X, Y) is an (ε̄, ε∗)-approximate optimal solution of the SDP (1) if it is an
ε̄-approximate feasible solution and the relative duality gap is less than ε∗.

To compute the search direction (dx, dX, dY), the SDPA employs Mehrotra type predictor-corrector
procedure [13] with use of the HRVW/KSH/M search direction [10, 12, 14]. Let (x, X, Y) = (xk, Xk,Y k)
be a current point satisfying X Â O and Y Â O.

In Mehrotra type predictor procedure, we first choose a centering parameter βp for the predictor-step.
If (x,X, Y) is an ε̄-approximate feasible solution of the SDP (1), then let βp = 0, else let βp = β̄, where
β̄ is a parameter whose default value is 0.2. Ideally we want to solve the following system to compute a
search direction (dx, dX, dY) for the next point (x + dx,X + dX,Y + dY) being on the central path C.

X + dX =
∑m

i=1 F i(xi + dxi)− F 0,
F i • (Y + dY) = ci (i = 1, 2, . . . , m),

(X + dX)(Y + dY) = βpµI,

where µ = (X • Y)/n. But this system is nonlinear, so that we ignore the nonlinear term dXdY in the
third equation to obtain the modified Newton system, a system of linear equations in a predictor search
direction (dxp, dXp, dY p):

∑m
i=1 F idxi − dX = P ,

F i • d̂Y = di (i = 1, 2, . . . , m),

dXY + Xd̂Y = R, dY = (d̂Y + d̂Y
T
)/2,

(7)

where P = F 0 −
∑m

i=1 F ixi + X, di = ci −F i • Y and R = βpµI −XY . Note that dY = (d̂Y + d̂Y
T
)/2

symmetrize the matrix d̂Y for Y + dY being a symmetric matrix. This symmetrization is based on the
HRVW/KSH/M search direction [10, 12, 14]. It should be remarked that for any X Â O, Y Â O, F i

(i = 1, 2, . . . , m), P ∈ Sn, R ∈ Rn×n and di ∈ R (i = 1, 2, . . . , m), the modified Newton system (7) is
guaranteed to have a unique solution (dx, dX, dY) even in case when the central path C does not exists
[12].

Then we proceed to Mehrotra type corrector procedure. We first compute a centering parameter βc.
Let

βaux =
(

(X + dXp) • (Y + dY p)
X • Y

)2

.

The definition of βaux is slightly different from the one proposed in the paper [13]. The computation of our
βaux is cheaper than the original one that requires the computation of the step sizes

max{α : X + αdXp º O} and max{α : Y + αdY p º O}.
We confirmed through numerical experiments that our βaux works as effective as the original one. If
βaux > 1.0, let βc = 1.0. Otherwise we consider two possible cases depending on the feasibility of the current
point (x,X, Y). If (x, X, Y) is an ε̄-approximate feasible solution of the SDP (1), let βc = max {β∗, βaux},
else let βc = max

{
β̄, βaux

}
, where β∗ and β̄ are parameters whose default values are set at 0.1 and 0.2,

respectively. Replacing R = βpµI − XY by R = βcµI − XY − dXpdY p, we then solve the modified
Newton equation (7) to compute the predictor-corrector search direction (dx, dX, dY).

We can reduce the modified Newton system (7) into the following system of linear equations.

Bdx = r, (8)

dX =
m∑

i=1

F idxi − P , d̂Y = X−1(R− dX Y), dY = (d̂Y + d̂Y
T
)/2,

where

Bij = (X−1F iY) • F j (1 ≤ i ≤ m, 1 ≤ j ≤ m),
ri = −di + F i • (X−1(R + PY)) (1 ≤ i ≤ m).

We call the equation (8) as the Schur complement equation. To solve the Schur complement equation
(8), the SDPA applies the Cholesky factorization to the coefficient matrix B, which is a completely dense

3

positive definite matrix in general; hence it requires O(m3) arithmetic operations. The SDPA solves the
Schur complement equation twice in Mehrotra type predictor and corrector procedures explained above. But
they share a common coefficient matrix B. Therefore the SDPA computes the elements of B and factorizes
it only once in each iteration. If we applied the standard dense matrix multiplication, the computation of B
would require O(mn3 +m2n2) arithmetic operations, and it would occupy the major part of the total CPU
time of the execution of the SDPA. The SDPA exploits the sparsity of data matrices F i (i = 1, 2, . . . ,m),
and utilizes three distinct formulae developed in the paper [7] for computing Bij taking account of the
sparsity of F i and F j ; the first formula deals with the case where both F i and F j are dense, and the
second the case where F i is dense and F j is sparse, and the third the case where both F i and F j are
sparse. This significantly contributes to the computational efficiency of the SDPA. This sparsity handling
technique was employed also in the SDPT3 [21]. See [7, 8] for more details.

We summarize the entire algorithm of the SDPA below.

The Primal-Dual Interior-Point Algorithm of the SDPA

Step 0 (Initialization): Choose an initial point (x0, X0,Y 0) satisfying X0 Â O and Y 0 Â O. Let k = 0.

Step 1 (Checking Feasibility): If (xk, Xk, Y k) is an (ε̄, ε∗)-approximate optimal solution of the SDP
(1), stop the iteration.

Step 2 (Computing a search direction): As described above, apply Mehrotra type predictor-corrector
procedure to generate a search direction (dx, dX, dY).

Step 3 (Generating a new iterate): We first compute ᾱp and ᾱd as the maximum primal and dual
step lengths so that Xk+1 = Xk + αpdX and Y k+1 = Y k + αddY remain positive semidefinite.

ᾱp = max{α ∈ (0, αmax] | Xk + αdX º O}, ᾱd = max{α ∈ (0, αmax] | Y k + αdY º O},
where αmax is a sufficiently large constant; we take αmax = 100. The SDPA employs the Lanczos
method for the computation of ᾱp and ᾱd [22]. If (xk, Xk) is not an ε̄-approximate feasible solution of
P then take the primal step size αp = min{γ∗ᾱp, 1.0}, else take αp = γ∗ᾱp, where γ∗ is a parameter
whose default value is 0.9 to keep Xk+1 positive definite. When (xk, Xk) is not an ε̄-approximate
feasible solution, we know that the equality

Xk + αpdX =
m∑

i=1

F i(xk
i + αpdxi)− F 0

hold in general if and only if αp = 1; note that if Xk +αpdX º O in addition, then (Xk +αpdX,xk +
αpdx) gets feasible. This is the reason why we impose αp ≤ 1.0 on the primal step length in such a
case. It should also be emphasized that if (xk, Xk) is feasible then (xl, X l) is also feasible for any
l ≥ k. We set the next iterate

(xk+1,Xk+1,Y k+1) = (xk + αpdx, Xk + αpdX,Y k + αddY)

Let k ← k + 1. Go to Step 1.

3 The SDPA Software Package

The SDPA user’s manual and the source code of the SDPA are available at the WWW site

http://www.is.titech.ac.jp/~kojima/sdpa/index.html.

Since the SDPA 6.0 (the latest version at the moment of writing) incorporates LAPACK [1], one needs to
compile and link it to the SDPA according to the SDPA user’s manual. In this section, we show how to
execute the SDPA using a small example of SDP.

We consider the standard form SDP (1) with the data.

m = 3, n = 2, c = (48,−8, 20)T ,

F 0 =
(−11 0

0 23

)
, F 1 =

(
10 4
4 0

)
, F 2 =

(
0 0
0 −8

)
, F 3 =

(
0 −8

−8 −2

)
.

4

The following input data file for the SDPA contains these quantities.

"Example 1: mDim = 3, nBLOCK = 1, {2}"
3 = mDIM
1 = nBLOCK
2 = bLOCKsTRUCT

{48, -8, 20}
0 1 1 1 -11
0 1 2 2 23
1 1 1 1 10
1 1 1 2 4
2 1 2 2 -8
3 1 1 2 -8
3 1 2 2 -2

Here we have named this file as ’example1.dat-s’, but we could replace ’example1’ by any name. The
postfix ’dat-s’ means the file is written in the SDPA-sparse-format. The SDPA accepts two different input
file formats, the SDPA-sparse-format and the SDPA-dense-format. We need to use the postfix ’dat-s’ for the
former input format and ’dat’ for the latter. The user can use freely either of the input formats depending
on the sparsity of data matrices F 0,F 1,F 2, . . . , F m. The file ’example1.dat-s’ is contained in the software
package SDPA.

The 1st line ”Example 1: mDim = 3, nBLOCK = 1, 2” of the file ’example1.dat-s’ is a comment line.
The 2nd line ’3 = mDIM’ indicates that the number of equality constraints of the dual SDP D is 3. The
3rd and 4th lines are used to describe the block diagonal structure illustrated below that is shared among
the data matrices F 0, F 1, F 2, . . . , F m, the primal matrix variable X and the dual matrix variable Y . In
this example, they are all one block 2 × 2 matrices. Hence ’nBLOCK’ (the number of blocks) is 1 and
’bLOCKsTRUCT’ (the block structure) is 2. The 5th line ’{48, -8, 20}’ describes elements in vector c. The
lines below the 5th line define elements in matrices F 0, F 1, F 2,F 3. For instance, the 9th line ’1 1 1 2 4’
describes that the 1st block of F 1 has 4 in the position (1, 2), and the 12th line ’3 1 2 2 -2’ describes that
the 1st block of F 3 has −2 in the position (2, 2). Note that only elements in the upper triangular part of
F 0, F 1,F 2, F 3 need to be assigned since all the matrices are symmetric.

The SDPA-sparse-format is designed to describe large scale sparse SDPs which often appear in various
applications. To describe a general block diagonal structure of the form

F =

B1 O O · · · O
O B2 O · · · O
...

...
...

. . .
...

O O O · · · B`

 ,

Bi : a pi × pi symmetric matrix (i = 1, 2, . . . , `),

(9)

we define ’nBLOCK’ (the number of blocks) and ’bLOCKsTRCTUT’ (the block diagonal structure) as
follows:

nBLOCK = `,

bLOCKsTRUCT = (β1, β2, . . . , β`),

βi =
{

pi if Bi is a symmetric matrix,
−pi if Bi is a diagonal matrix.

For example, if

1 2 3 0 0 0 0
2 4 5 0 0 0 0
3 5 6 0 0 0 0
0 0 0 1 2 0 0
0 0 0 2 3 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 5

, (10)

5

then

nBLOCK = 3 and bLOCKsTRUCT = (3, 2, −2).

To solve the example1 whose data is described in the file ’example1.dat-s’, type

$./sdpa example1.dat-s example1.result

Here ’./sdpa’ is the name of the SDPA executable binary and ’example1.result’ is an output file, which
contains solutions and some other information. The user can see, in the file ’example1.result’, an approx-
imate optimal solution (x,X, Y) of the example1 with the relative gap = 9.15 × 10−8, the primal
feasible error = 1.50 × 10−14, and the dual feasible error = 3.13 × 10−12. When the SDPA runs,
it reads several parameters from the parameter file ’param.sdpa’. The user can control the execution of the
SDPA through those parameters which include ε∗, ε̄, β∗, β̄ and γ∗ explained in Section 2; see also Table 1
for their default values.

Parameter default value
ε∗ 1.0× 10−7 the accuracy of relative gap
ε̄ 1.0× 10−7 the accuracy of feasibility

β∗ 0.1 the centering parameter (feasible case)
β̄ 0.2 the centering parameter (infeasible case)
γ∗ 0.9 the step size parameter

Table 1: Some Parameters of the SDPA

For more details of the SDPA and its callable library, see the SDPA user’s manual.

4 Numerical Results on the SDPA 6.0

In this section, we evaluate the performance (efficiency and stability) of the SDPA 6.0 through numerical
results on three types of problems, randomly generated SDPs with fully dense data matrices, SDPs picked
up from SDPLIB [6], and large scale SDPs arising from quantum chemistry [15, 16]. We used the default
parameters listed in Table 1 for all problems. We also compare the SDPA 6.0 with some existing software
packages for solving general SDPs. We chose the SDPT3 [21], the CSDP [5],the SeDuMi [18] and the SDPA
5.01 (the previous version of the SDPA) [8] as competitors, since they demonstrated high performance in
the SDPLIB benchmark [6]. All of the software packages incorporate the PDIPA (primal-dual interior-point
algorithm). The main differences in the SDPA 6.0 and these software packages are:

• Programming languages used for implementation
The SDPT3 and the SeDuMi are written in Matlab script and MEX-files, the CSDP is written in C,
and the SDPA is written in C++. The difference in languages influences their user interface, callable
library and efficiency of data access. But, their performance of dense matrix computation must be
similar, since LAPACK is used in all these software packages,

• Search direction
The SDPT3, the CSDP and the SDPA use the HRVW/KSH/M direction [10, 12, 14] as search direc-
tions in Mehrotra type predictor-corrector procedure, while the SeDuMi uses the NT direction [17].
The NT direction possesses various nice theoretical properties such as a low computational complexity
and an extensibility to more general problems. In practical computation, especially for large scale
sparse SDPs, however, the HRVW/KSH/M direction is cheaper than the NT direction.

• Feasibility vs optimality
The SeDuMi is based on the homogeneous self-dual embedding of the PDIPA, and all others (the
SDPA, the SDPT3 and the CSDP) on the PDIPA that can start from an infeasible interior point.
In the former case, pursuing the feasibility and pursuing the optimality (or reducing the duality
gap) during the iterations are simultaneously and automatically done by the homogeneous self-dual

6

embedding. In the latter case, we can control each of them independently. The SDPA places more
weight in pursuing the feasibility than pursuing the optimality compared to the SDPT3 and the
CSDP. This difference sometime affects their performance when they are applied to SDPs having
narrow primal or dual feasible regions.

We set all software packages to stop their iterations when the relative gap becomes smaller than
1.0 × 10−7. As the iterate (x,X, Y) approaches an optimal solution, the primal variable matrix X, the
dual variable matrix Y and the coefficient matrix B in the Schur complement equation (8) becomes ill-
conditioned, and the Cholesky factorization (or the inversion) of these matrices may cause serious numer-
ical instability and/or serious numerical error. To avoid such difficulties, each software package incorpo-
rates some other stopping criteria besides the relative duality gap. In the SDPA 5.01 and 6.0, we took
ε̄ = ε∗ = 1.0× 10−7. They attain an (ε∗, ε̄)-approximation optimal solution when they terminate normally.
But, before having found an (ε∗, ε̄)-approximation optimal solution, they may terminate to avoid numerical
instability caused by the Cholesky factorization of the ill-conditioned coefficient matrix B in the Schur
complement equation (8).

4.1 Randomly Generated Standard Form SDPs

First, we report numerical results on randomly generated standard form SDPs. Each element of F i(i =
0, 2, 3, . . . , m) was chosen from the uniform distribution of [−1, 1], while F 1 was set at the n × n identity
matrix In. We chose ci = F i • In(i = 1, 2, . . . ,m). By construction, if we take x = (n + 1, 0, 0, . . . , 0) ∈
Rm, X = (n+1)F 1−F 0 and Y = In, then (x, X,Y) is a primal and dual interior feasible solution of the
resulting SDP. Hence we know that the resulting SDP has a primal-dual optimal solution with no duality
gap.

Table 2 shows the performance of the SDPA 6.0 for randomly generated SDPs. The numerical experiment
was done on Pentium IV 2.2 GHz with 1GB memory under Linux 2.4.18. The first and the second columns
of Table 2 denote the number m of the equality constraints of the dual SDP D and the size n of matrices
X, Y , F 0,F 1, . . . , F m, respectively. The third and the fourth columns display the computational time in
second and the total number of iterations to solve each problem, respectively. The fifth column denotes
the relative gap defined in (6), and the last column the primal-dual feasibility error which is defined as the
maximum of the primal and the dual feasibility errors given in (5). In all cases, the SDPA 6.0 successfully
attained (ε̄, ε∗)-approximate optimal solutions in 14 - 16 iterations.

m n CPU time(second) iter relgap feaserr
20 20 0.06 14 3.31× 10−8 1.86× 10−13

40 20 0.15 14 5.51× 10−8 1.89× 10−13

80 20 0.29 14 2.04× 10−8 1.53× 10−13

200 40 3.74 15 4.30× 10−8 3.92× 10−13

200 100 24.85 15 5.49× 10−8 1.38× 10−12

400 40 11.14 15 2.17× 10−8 1.31× 10−12

400 100 75.94 16 1.18× 10−8 1.82× 10−12

800 40 36.61 14 1.78× 10−8 2.07× 10−12

800 100 244.94 16 1.13× 10−8 3.47× 10−12

800 200 1243.33 16 1.39× 10−8 5.57× 10−12

Table 2: Performance of the SDPA 6.0 applied to randomly generated SDPs

As shown in Table 3, the SDPA 6.0 achieves the fastest among the software packages we tested. The main
reason is that the SDPA converts the input date read as a sparse format to a dense format automatically
if its density exceeds a threshold value. In addition, the SDPA 6.0 employs LAPACK for dense matrix
computation. Since data matrices F 1, F 1, . . . , F m of the above randomly generated SDPs are fully dense,
LAPACK significantly improves the performance of the SDPA 5.01. One point we have to note is that
the CPU time shown in Table 3 includes the time of reading data from a file; in some of the software
packages including the SDPA 6.0, this part can not be clearly separated because when they read data as
the SDPA-sparse-format, they simultaneously transform the data to another data format or data structure

7

m n SDPA 6.0 SDPT3 CSDP SeDuMi SDPA 5.01
20 20 0.06 0.64 0.11 0.49 0.13
40 20 0.15 0.77 0.23 0.46 0.24
80 20 0.29 1.47 0.62 0.83 0.65
200 40 3.74 11.63 11.39 9.07 13.17
200 100 24.85 68.61 72.54 83.48 125.11
400 40 11.14 26.18 40.54 20.81 40.46
400 100 75.94 157.91 251.91 182.37 337.63
800 40 36.61 66.54 153.68 61.14 134.19
800 100 244.94 345.33 976.03 435.36 1012.84
800 200 1243.33 ∗ 5667.43 2904.71 5494.47

Table 3: Comparison in CPU time in second to solve randomly generated SDPs by the SDPA 6.0, the
SDPT3, the CSDP, the SeDuMi and the SDPA 5.01 (’∗’ stands for ’out of memory’).

name m nBLOCK bLOCKsTRUCT
arch8 174 1 (161)

control11 1596 2 (110, 55)
gpp500-1 501 1 (500)
mcp500-3 500 1 (500)

theta6 4375 1 (300)
truss8 496 34 (19, 19, . . . , 19, 1)

equalG11 801 1 (801)
maxG32 2000 1 (2000)
thetaG51 6910 1 (1001)

Table 4: Selected problems from SDPLIB. Here m denotes the number of the equality constraints of the
dual SDP D, and nBLOCK and bLOCKsTRUCT define the block diagonal structure of each problem (see
Section 3).

for succeeding efficient computation. The SDPT3 took a longer time for this part than the SDPA 6.0. This
fact partially reflects the difference in the SDPA 6.0 and the SDPT3.

4.2 SDPLIB

SDPLIB[6] is a set of benchmark SDPs. Since SDPLIB collects 92 SDPs from various fields such as control
theory and graph theory, we select 9 problems listed in Table 4 to show their numerical results in Table 5.

Table 5 shows the CPU time in second for each software to solve each selected problem from SDPLIB
and the total CPU time in second to solve all problems in SDPLIB except maxG55 and maxG60. The two
problems maxG55 and maxG60 need so large memory and any software we chose could not solve because
of out of memory.

We know from Table 5 that the SDPA 6.0 is the fastest software to solve many problems in SDPLIB.
In particular, the SDPA 6.0 shows a higher performance for problems with a larger number of equality
constraints compared to the size of data matrices such as theta6 and thetaG51. On the other hand, the
SDPT3 shows a higher performance for problems with a large size of data matrices compared to the number
of equality constraints such as maxG32, and the CSDP for the problems with many small block diagonal
data matrices such as truss8. The SDPA 6.0 apparently spent a longer CPU time to solve control11 than the
SDPT3. This is because the SDPA 6.0 employs a strategy that places more weight to perusing the feasibility
than reducing the relative gap as mentioned above. Actually, the SDPA attained a smaller feasibility error,
6.04 × 10−8, than that of the SDPT3, 5.35 × 10−7 in this problem. We take this strategy since a small
relative gap at a point (x, X,Y) ∈ Rm× Sn

+× Sn
+ is meaningful only when the feasibility error at the point

(x,X, Y) ∈ Rm×Sn
+×Sn

+ is sufficiently small. But this strategy required more CPU time since the feasible
region of control11 is very narrow.

8

name SDPA 6.0 SDPT3 CSDP SeDuMi SDPA 5.01
arch8 5.2 15.5 13.7 38.1 19.46

control11 498.4 264.5 1028.3 531.7 1294.63
gpp500-1 28.8 66.7 104.8 2676.7 762.91
mcp500-3 19.7 28.6 53.4 250.8 256.82

theta6 292.5 390.2 1176.8 1989.9 1441.2
truss8 24.2 19.2 8.4 8.9 18.26

equalG51 252.0 484.7 484.3 4062.9 3197.68
maxG32 2263.7 784.2 4514.1 14477.5 ∗
thetaG51 3501.4 6540.6 12017.0 14342.1 13693.1

total 10344.2 11432.6 27034.1 81465.5 18516.8
90 problems + ∗

Table 5: Numerical Results on SDPLIB benchmark problems: CPU time in second to solve each selected
problem and the total CPU time in second to solve all 90 problems of SDPLIB (’∗’ stands for ’out of
memory’).

From the total CPU time for 90 problems in Table 5, we may conclude the SDPA 6.0 and the SDPT3
attained a higher performance for SDPLIB benchmark problems than the CSDP, the SeDuMi and the SDPA
5.01.

4.3 Application to Quantum Chemistry

Variational calculations of fermion second-order reduced density matrix is an application of SDPs arising
from quantum chemistry [15, 16]. It is a minimization problem of the total energy H •Y of fermion system
subject to linear constraints and the positive semidefinite constraints on Y ∈ Sn, which is formulated in the
dual standard form SDP D of (1). Here H denotes the Hamiltonian. The linear equality constraints involves
various physical constraints on the number of electrons, spin squared operator, eigen state of the number
of electrons, etc.. The positive semidefinite constraint Y º O comes from the character of second-order
reduced density matrices. See [15, 16] for more details of the formulation.

There are some points to be noted on this application. First, the resulting problem has quite many
equality constraints, i.e., the number of equality constraints m of the dual SDP D of (1) can be very large;
m ≥ 15000 in the largest problems that we solved. See Table 6 which shows the number m of equality
constraints and the block diagonal structure of the problems that we tested. This causes a difficulty in
storing the m×m fully dense coefficient matrix B of the Schur complement equation (8) and tremendeous
computational time in its Cholesky factorization. The other point is that the data matrices are very sparse,
so that the SDPA 6.0 could fully utilized the sparsity handling technique proposed in the paper [7] to
considerably save the computational time.

System,state,basis m nBLOCK bLOCKsTRUCT
BH3,1A1,STO-6G 2897 2 (120,120)
CH3,1A1,STO-6G 2897 2 (120,120)
HF,1Σ+,STO-6G 4871 3 (66,66,144)

OH+,3Σ−,STO-6G 4871 3 (66,66,144)
NH2,2A1,STO-6G 8993 3 (91,91,196)
H2O,1A1,STO-6G 8993 3 (91,91,196)
CH4,1A1,STO-6G 15313 3 (120,120,256)
LiF, 1Σ,STO-6G 15313 3 (120,120,256)

Ne, 1S, Valence double-ζ 15313 3 (120,120,256)

Table 6: SDPs arisen from quantum chemistry

As shown in Tables 7 and 8, the SDPA 6.0 successfully solved all problems in a reasonably high accuracy.
Table 7 shows compariosn in CPU time among the SDPA 6.0 the SDPT3, the CSDP, SeDuMi and the

9

System, state, basis SDPA SDPT3 CSDP SeDuMi SDPA 5.01
BH3,1A1,STO-6G 183.48 395.30 644.04 520.41 768.74
CH3,1A1,STO-6G 183.31 336.44 688.35 529.83 769.40
HF,1Σ+,STO-6G 562.7 542.50 3089.34 2450.77 2383.44

OH+,3Σ−,STO-6G 644.73 614.76 3327.68 2474.36 2334.35
NH2,2A1,STO-6G 3340.12 3619.80 13562.28 ∗ 17360.88
H2O,1A1,STO-6G 3167.07 3843.09 14629.91 ∗ 23590.75
CH4,1A1,STO-6G 18789.17 ∗ ∗ ∗ ∗
LiF, 1Σ,STO-6G 20823.65 ∗ ∗ ∗ ∗

Ne, 1S, Valence double-ζ 20802.14 ∗ ∗ ∗ ∗

Table 7: Numerical Results on quantum chemical problems: CPU time in second to solve problem
(’∗’ stands for ’out of memory’).

System, state, basis SDPA SDPT3 CSDP SeDuMi SDPA 5.01
BH3,1A1,STO-6G 1.28× 10−8 4.55× 10−9 1.18× 10−8 1.57× 10−8 1.16× 10−8

CH3,1A1,STO-6G 3.00× 10−8 6.30× 10−8 1.11× 10−8 1.04× 10−8 2.85× 10−8

HF,1Σ+,STO-6G 6.65× 10−6 2.90× 10−8 2.87× 10−8 1.03× 10−10 3.98× 10−5

OH+,3Σ−,STO-6G 1.13× 10−5 3.03× 10−8 4.79× 10−8 6.41× 10−8 6.72× 10−6

NH2,2A1,STO-6G 3.03× 10−6 2.97× 10−7 4.86× 10−8 ∗ 7.93× 10−7

H2O,1A1,STO-6G 6.54× 10−6 1.11× 10−7 1.34× 10−6 ∗ 2.02× 10−6

CH4,1A1,STO-6G 6.19× 10−6 ∗ ∗ ∗ ∗
LiF, 1Σ,STO-6G 5.58× 10−6 ∗ ∗ ∗ ∗

Ne, 1S, Valence double-ζ 9.64× 10−6 ∗ ∗ ∗ ∗

Table 8: Numerical Results on quantum chemical problems: Relative gap (’∗’ stands for ’out of memory’).

SDPA 5.01. We observe that the SDPA 6.0 and the SDPT3 solved the problems with m = 2897, 4871
and 8993 faster than the other software packages. Only the SDPA 6.0 could solve the largest problem with
m = 15313 because all other software packages encountered out of memory. The numerical experiments on
this application were done on ATHLON 1.2 GHz with 2GB memory under Linux 2.4.18.

Table 8 shows the relative gap defined as (6) at each approximate optimal solution obtained by the
software packages under comparison. At a glance, the SDPT3 attained a smaller relative gap than the SDPA
6.0 in comparable time, so that we may think the SDPT3 generated higher quality approximate solutions
than the SDPA 6.0. This observation is not necessarily true because we need to check their feasibility errors
too. Table 9 shows that the feability error, defined as (5), at approximate solutions obtained by the SDPA
6.0 is smaller than that of the SDPT3 in the problems that they both could solve. This is due to the
strategy that the SDPA 6.0 places more weight to persuing the feasibility than reducing the relative gap as
mentioned above.

System, state, basis SDPA SDPT3
BH3,1A1,STO-6G 3.05× 10−13 5.90× 10−10

CH3,1A1,STO-6G 2.09× 10−11 2.90× 10−9

HF,1Σ+,STO-6G 2.44× 10−9 1.44× 10−7

OH+,3Σ−,STO-6G 9.79× 10−8 1.97× 10−7

NH2,2A1,STO-6G 2.99× 10−8 7.86× 10−7

H2O,1A1,STO-6G 6.01× 10−8 1.12× 10−7

Table 9: Numerical Results on quantum chemical problems: Feasible error.

10

5 Concluding Remarks

Through numerical results, we have checked the stability and the performance of the SDPA 6.0. In particular,
exploiting sparsity provides us great efficiency. It contributes to solving large scale and sparse problems
arising from various field.

We have compared the performance of the SDPA 6.0 with other existing software packages. The SDPA
6.0 achieves the highest speed for many of the problems tested. We have to point out, however, that the
accuracy attained by the SDPA 6.0 is lower than that of other software packages in SDPs arising from
quantum chemistry although the feasibility error attained by the SDPA 6.0 is smaller. Ideally both higher
accuracy and smaller feasibility error are preferable, but not so easy to attain in some problems. Further
investigation is necessary to guarantee a well-balanced high quality solution.

The authors hope the SDPA will help many researchers’ study in various fields. Any feedback from
practical applications will bring big benefits to the SDPA. They will continue to refine the SDPA in order
to apply it to more real problems.

ACKNOWLEDGMENTS
The authors thank Mr. Maho Nakata of Graduate School of Engineering, Kyoto University, for many
valuable suggestions and helpful cooperation on applications of the SDPA to quantum chemistry. The
authors also thank Professor Kim Chaun Toh of National University of Singapore for a modification of the
SDPT3 so as to solve relatively large randomly generated SDPs correctly.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen, “LAPACK Users’ Guide Third” Society for Industrial
and Applied Mathematics 1999 Philadelphia, PA, ISBN 0-89871-447-8 (paperback).

[2] S. J. Benson and Y. Ye, DSDP home page. http://www.mcs.anl.gov/˜benson/dsdp (2002).

[3] A. Ben-Tal and A. Nemirovskii Lectures on Moden Convex Optimizatin Analysis, Alogorithms, and
Engineering Applications, (SIAM, Philadelphia, 2001).

[4] S. Boyd et al, “Linear matrix inequalities in system and control theory” Society for Industrial and
Applied Mathematics 1994 Philadelphia, PA, ISBN 0-89871-334-X

[5] B. Borchers, “ CSDP, A C Library for Semidefinite Programming,” Optimization Methods and Software
11 & 12 (1999) 613–623.

[6] B. Borchers, “SDPLIB 1.2, a library of semidefinte programming test problems,” Optimization Methods
and Software 11 & 12 (1999) 683–690.

[7] K. Fujisawa, M. Kojima and K. Nakata, “Exploiting Sparsity in Primal-Dual Interior-Point Methods
for Semidefinite Programming,” Mathematical Programming 79 (1997) 235–253.

[8] K. Fujisawa, M. Fukuda, M. Kojima and K. Nakata, “Numerical Evaluation of SDPA (SemiDefinite
Programming Algorithm),” in: H. Frenk, K. Roos, T. Terlaky and S. Zhang eds., High Performance
Optimization, (Kluwer Academic Press, 2000) pp.267-301.

[9] M. X. Goemans and D. P. Williamson, “Improved approximation alogrithoms for maxmum cut and sat-
isfiability problems using semidefinite programming,” Journal of Association for Computing Machinery
42(6) (1995) 1115–1145.

[10] C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, “An interior-point method for semidefinite
programming,” SIAM Journal on Optimization 6 (1996) 342–361.

[11] M. Kojima, S. Mizuno and A. Yoshise, “A Primal-Dual Interior Point Algorithm for Linear Pro-
gramming”, in: N. Megiddo, ed., Progress in Mathematical Programming: Interior Point and Related
Methods (Springer-Verlag, New York, 1989) 29–47.

11

[12] M. Kojima, S. Shindoh and S. Hara, “Interior-point methods for the monotone semidefinite linear
complementarity problems,” SIAM Journal on Optimization 7 (1997) 86-125.

[13] S.Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM Journal on
Optimization 2 (1992) 575–601.

[14] R.D.C. Monteiro, “Primal-dual path following algorithms for semidefinite programming,” SIAM Jour-
nal on Optimization 7 (1997) 663–678.

[15] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata and K. Fujisawa, “Variational calculations
of fermion second-order deduced density matrices by semidefinite programming algorithm,” Journal of
Chemical Physics 114 (2001) 8282–8292.

[16] M. Nakata, M. Ehara, and H. Nakatsuji, “Density matrix variational theory: Application to the
potential energy surfaces and strongly correlated systems,” Journal of Chemical Physics 116 (2002)
5432–5439.

[17] Yu. E. Nesterov and M. J. Todd, “Primal-Dual Interior-Point Methods for Self-Scaled Cones,” SIAM
Journal on Optimization 8 (1998) 324–364.

[18] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimizatin over symmetric cones”, Optimization
Methods and Software 11 & 12 (1999) 625–653.

[19] K. Tanabe, “Centered Newton Method for Mathematical Programming,” in: M. Iri and K. Yajima,
eds., System Modeling and Optimization (Springer, New York, 1988) 197–206.

[20] M.J. Todd, “Semidefinite optimization,” Acta Numerica 10 (2001) 515–560.

[21] M. J. Todd, K. C. Toh and R. H. Tütüncü, “SDPT3 – a MATLAB software package for semidefinite
programming, version 1.3.”, Optimization Methods and Software 11 & 12 (1999) 545–581.

[22] K. C. Toh, “A note on the calculation of step-lengths in interior-point methods for semidefinite
programming,” Computational Optimization and Applications 21 (2002) 301–310.

[23] L. Vandenberghe, S. Boyd, “Positive-Definite Programming,” Mathematical Programming: State of
the Art 1994 J.R.Birge and K.G.Murty ed.s, U. of Michigan, 1994.

[24] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, Theory, Algo-
rithms, and Applications, (Kluwe Academic Publishers, Massachusetts, 2000).

12

