Research Reports on Mathematical and Computing Sciences
Series B : Operations Research

Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-0033, Japan

SDPA (SemiDefinite Programming Algorithm)
User’s Manual — Version 5.01

Katsuki Fujisawa', Masakazu Kojima*, Kazuhide Nakata®
August 2000

Abstract. The SDPA (SemiDefinite Programming Algorithm) is a software package for solv-
ing semidefinite program (SDP). It is based on a Mehrotra-type predictor-corrector infeasible
primal-dual interior-point method. The SDPA handles the standard form SDP and its dual. It
is implemented in C++ language utilizing the Meschach [9] for matrix computation. The SDPA
incorporates dynamic memory allocation and deallocation. So, the maximum size of an SDP to
be solved depends on the size of computational memory which user’s computer loads. The SDPA
version 5.01 enjoys the following features:

e Callable library of the SDPA is available.

e Three types of search directions are available; the one proposed by [4, 5] (see also [7]), the
one by [8, 10], and the one by [1, 2].

e Efficient method for computing the search directions when an SDP to be solved is large scale
and sparse [3].

e Block diagonal matrix structure and sparse matrix structure in data matrices are available.
e Mehrotra-type predictor-corrector [1, 2, 10] is incorporated.

e Some information on infeasibility of a semidefinite program to be solved is provided.
This manual and the SDPA can be found in the directory
ftp://ftp.is.titech.ac.jp/pub/OpRes/software/SDPA /
Read the file “README” there for more details on how to get the SDPA.
Key words Semidefinite Programming, Interior-Point Method, Computer Software

1 e-mail:fujisawa@is-mj.archi.kyoto-u.ac.jp
* e-mail:kojima@is.titech.ac.jp

f e-mail:nakata@momonga.t.u-tokyo.ac.jp

Contents
1. Installation.

2. Semidefinite Program.
2.1. Standard Form SDP and Its Dual.
2.2 Example 1. Lo
2.3. Example 2. . . . L

3. Files Necessary to Execute the SDPA.

4. Input Date File.
4.1. “examplel.dat” — Input Data File of Example 1.
4.2. “example2.dat” — Input Data File of Example 2.
4.3. Format of Input Data File.
4.4. Title and Comment. L e
4.5. The Number of the Primal Variables.
4.6. The Number of the Blocks and the Block Structure Vector.
4.7. Constant Vector

4.8. Constraint Matrices.
5. Parameter File.

6. Output.
6.1. Execution of the SDPA.
6.2. Output on the Display.
6.3. Outputtoa File.. o

7. Advanced Use of the SDPA.
7.1. Checking Input Data File. o
7.2. Three Types of Search Directions.
7.3. Imitial Point.
7.4. Sparse Input Data File.
7.5. Sparse Initial Point File.

7.6. More on Parameter File.

8. The Callable Library of SDPA
8.1. Case 11 o L

NoRENC I I B e

10

12
12
12
15

17
17
17
18
18
19
20

1. Installation.

The SDPA package is available at the following ftp site:
ftp://ftp.is.titech.ac.jp/pub/OpRes/software/SDPA /

After reading the README file one can click on 5.00 to enter into a directory of the latest
version of the SDPA and down-load a file appropriate to your platfome. Here, we assume that
this appropriate platform is SPARC Station (Solaris 2.x) egcs version. The down-loaded file
(SOLARIS _egcsl.1.2.tar.gz) will be moved in a suitable directory. To resolve this file, execute

the following procedures:

tar xvzf SOLARIS egcsl.1.2.tar.gz

The tar command will create the subdirectory sdpaSUNS in which one can find the following

files:
r
sdpa_doc.ps An user’s manual.
sdpa An executable binary, which solves the SDPs.

param.sdpa

examplel.dat, example2.dat
examplel.dat-s

examplel.ini

examplel.ini-s

sdpa.a

meschach.a

Makefile

examplel-1.cpp, examplel-2.cpp
example2-1.cpp, example2-2.cpp
example3.cpp, example4.cpp
example5.cpp

sdpa-lib.hpp, sdpa-lib2.hpp,
matrix.h, matrix2.h,

sparse.h, sparse2.h

-

A parameter file, which contains 9 parameters to
control the SDPA.

Sample input files in the dense data format.

A sample input file in the sparse data format.
An initial point file in the dense data format.
An initial point file in the sparse data format.

A callable library of the SDPA.

A meschach library for matrix computations.

A makefile to compile sample source files.

Sample source files for utilizing the callable library.

Header files for utilizing the callable library sdpa.a.

\

/

Here, check whether the sdpa file has a execute permission.

permission, type

% chmod +x sdpa

Before using sdpa, type sdpa and make sure that the following message will be displayed.

% sdpa

sk s ok ok sk sk ok ok s ok ok sk ok ok ok s ok ok s ok sk ok sk ok ok sk ok ok s ok ok ok sk ok ok sk ok ok s ok ok s ok ok ok ok

R I

SDPA version 5.00
(C) : Kyoto University,
Tokyo Institute of Technology., 1999

¥ ¥ X ¥ %

sk s ok ok sk ok ok s ok ok sk ok ok ok s ok ok s ok sk ok sk ok ok sk ok ok s ok sk ok sk ok ok sk ok ok s ok ok s ok ok ok ok

If the sdpa has not a execute

Usage : sdpa DataFile OutputFile [-c] [InitialPtFile] [SearchDirection]
-C : check whether input matrices are symmetric.

SearchDirection : -1 (HRVW/KSH/M), -2 (NT) or -3 (AHO)

b

We also recommend executing the ranlib command before using the callable library.

% ranlib meschach.a
% ranlib sdpa.a

2. Semidefinite Program.

2.1. Standard Form SDP and Its Dual.

The SDPA (Semidefinite Programming Algorithm) solves the following standard form semidefinite
program and its dual. Here

m
P: minimize E CiT;
i=1

m
subject to X =Y Fiz;— Fy, X = O,
SDP i=1
X €S,

D: maximize FpeY
subject to F;eY =¢; (i=1,2,...,m), Y = O.
Y €S8,

S : the set of n X n real symmetric matrices.
F,eS(i=0,1,2,...,m) : constraint matrices.

O € S : the zero matrix.

c1 1
C9 m) m .

c= € R™ : acost vector, x = € R™ : a variable vector,
Cm Tm

X €S8, Y €S : variable matrices,

n n
U eV : the inner product of U, V € S,i.e., Z Z Ui;Vij
i=1j=1
U*»0O, < U €S is positive semidefinite.

Throughout this manual, we denote the primal-dual pair of P and D by the SDP. The SDP is
determined by m, n, c€ R™, F; € S (i =0,1,2,...,m). When (x,X) is a feasible solution (or
a minimum solution, resp.) of the primal problem P and Y is a feasible solution (or a maximum
solution, resp.), we call (x, X,Y) a feasible solution (or an optimal solution, resp.) of the SDP.

We assume:

Condition 1.1. {F; : i=1,2,...,m} C S is linearly independent.

If the SDP did not satisfy this assumption, it might cause some trouble (numerical instability)
that would abnormally stop the execution of the SDPA.

If we deal with a different primal-dual pair of P and D of the form
P: minimize Ajge X

subject to A;e X =b; (i=1,2,...,m), X > O,
X eS.

m
SDP’ D: maximize Z biyi
’ifnl
subject to ZAiyi +Z=Ay, Z*~ O,

i=1

ZcS.

we can easily transform from the SDP’ into the SDP as follows:

a I
—Ai(i=0,....,m) — F;i(i=0,...,m)
—a;(i=1,...,m) — ¢i=1,...,m)
X — Y
y — T
zZ — X
N /

2.2. Example 1.

P: minimize 48y; — 8y + 20y;3
subject to X = < 12 é)yl—k <8 _g >y2+< _g :g)yg— < _1(1) 22)
X - 0.
D: maximize _1(1) Qg) oY
subject to 12 é)oY—él& (8 _g).Y——8
_g :g).yzm, Y = O.

Here

48
m = 3, n=2c=| -8 ,F0_<_1(1) 22),
20

10 4 0 0 0 -8

The data (see Section 4.1.) of this problem is contained in the file “examplel.dat”.

2.3. Example 2.

b1 1.1
by —10
m = 5 n="T7¢c=| by | = 6.6 |,
by 19
bs 4.1

-14 -32 00 0.0 0.0 00 0.0
-32 =28 00 0.0 0.0 00 0.0

00 00 15 -—-12 21 00 0.0
Fy = 0.0 00 -12 16 —-3.8 00 0.0 |,
0.0 00 21 -38 15 0.0 0.0
00 00 00 00 00 18 0.0
00 00 00 00 00 00 —-4.0

05 52 00 00 00 00 0.0
52 =53 00 0.0 00 0.0 0.0
00 00 78 —-24 60 00 0.0
Fy = 0.0 00 —-24 42 65 00 0.0
0.0 00 60 65 21 00 0.0
0.0 00 00 00 00 —45 0.0
0.0 00 00 00 00 00 =35

-65 —-54 0.0 00 00 0.0 0.0
-54 —-66 0.0 00 00 0.0 0.0

0.0 00 67 =72 =36 00 0.0
Fy = 00 00 =72 73 =30 00 0.0
00 00 -36 -30 —-14 00 0.0
00 00 00 00 00 61 0.0
00 00 00 00 00 00 -15

As shown in this example, the SDPA handles block diagonal matrices. The data (see Section 4.2.)
of this example is contained in the file “example2.dat”.

3. Files Necessary to Execute the SDPA.

We need the following files to execute the SDPA

e “sdpa” — An executable binary for solving an SDP.

e “an input data file” — Any file name with the postfix “.dat” or “.dat-s” is possible; for
example, “problem.dat” and “example.dat-s” are legitimate names for input files. However,
the SDPA distinguishes a dense input data file with the postfix “.dat” from a sparse input
data file with the postfix “.dat-s”. See Section 4. and 7.4. for details.

e “param.sdpa” — A file describing the parameters used in the “sdpa”. See Section 4 for
details. The name is fixed to “param.sdpa”.

e “an output file” — Any file name except “sdpa” and “param.sdpa”. For example, “prob-
lem.1” and “example.out” are legitimate names for output files. See Section 7. for more
details.

The files “examplel.dat” (see Section 3.1) and “example2.dat” (see Section 3.2) contain the
input date of Example 1 and Example 2, respectively, which we have stated in the previous section.
To solve Example 1, type

% sdpa examplel.dat examplel.out

Here “examplel.out” denotes “an output file” in which the SDPA stores computational results such
as an approximate optimal solution, an approximate optimal value of Example 1, etc.. Similarly
we can solve Example 2 by using the “sdpa”.

4. Input Date File.

4.1. “examplel.dat” — Input Data File of Example 1.

"Example 1: mDim = 3, nBLOCK = 1, {2}"

3 = mDIM

1 = nBLOCK

2 = bLOCKsTRUCT
{48, -8, 20}

{ {-11, o}, {0, 23} }
{ {10, 4}, {4, 0} }
{{ o, o}, {0, -8+1}
{{ o, -8}, {-8, -2} }

4.2. “example2.dat” — Input Data File of Example 2.

*Example 2:
*mDim = 5, nBLOCK = 3, {2,3,-2}"
5 = mDIM
3 = nBLOCK
(2, 3, -2) = bLOCKsTRUCT
{1.1, -10, 6.6, 19, 4.1}
{

{{-1.4, -3.2 1%,

{-3.2,-28 } 1}

{ {15, -12, 2.1},
{-12, 16, -3.8 1},
{ 2.1, -3.8, 15 } }

{ 1.8, 4.0}
b

{{ 0.5, 5.2},
{ 5.2, 5.3} }
{{ 7.8, -2.4, 6.0},
{-2.4, 4.2, 6.57%,
{ 6.0, 6.5, 2.1} 1}
{-4.5, -3.5}
}
[J
[
[J
{
{{-6.5, -5.4 },
{-5.4, -6.6 + 1}
{{ 6.7, -7.2, -3.6 },
{-7.2, 7.3, -3.0 1},
{-3.6, -3.0, -1.4 3} }
{ 6.1, -1.5 }
}

4.3. Format of Input Data File.

In general, the structure of an input data file is as follows:

Title and Comment

m — the number of the primal variables x;’s
nBLOCK — the number of blocks
bLOCKsTRUCT — the block structure vector
c

Fy

Fy

Fp

In Sections 4.4. through 4.8. , we explain each item of the input data file in details.

4.4. Title and Comment.

On top of the input data file, we can write a single or multiple lines of Title and Comment. Each
line of Title and Comment must begin with “ or x and consist of no more than 75 letters; for
example

"Example 1: mDim = 3, nBLOCK = 1, {2}"

in the file “examplel.dat”, and

*Example 2:
*mDim = 5, nBLOCK = 3, {2,3,-2}

in the file “example2.dat”. The SDPA displays Title and Comment when it starts. Title and
Comment can be omitted.

4.5. The Number of the Primal Variables.

We write the number m of the primal variables in a line following the line(s) of Title and Comment
in the input data file. All the letters after m through the end of the line are neglected. We have

3 = wmDIM
in the file “examplel.dat”, and
5 = mDIM

[13

in the file “example2.dat”. In either case, the letters “= mDIM” are neglected.

4.6. The Number of the Blocks and the Block Structure Vector.

The SDPA handles block diagonal matrices as we have seen in Section 1.3. In terms of the number
of blocks, denoted by nBLOCK, and the block structure vector, denoted by bLOCKsTRUCT, we
express a common matrix data structure for the constraint matrices Fy, F1, ..., F,,. If we deal
with a block diagonal matrix F' of the form

B, O O --- O
B O B, O --- O
F = 0|’ (1)
O O O --- By
B, : a p; X p; symmetric matrix (i =1,2,...,¢),

we define the number nBLOCK of blocks and the block structure vector bLOCKsTRCTURE as
follows:

nBLOCK = /,
bLOCKsTRUCT = (81, B2, ..., Do),
8 = p; if B; is a symmetric matrix,
L —p; if B; is a diagonal matrix.

For example, if F' is of the form

OO OO WN -
OO OO TN
OO O OOt Ww
SO N = O OO
OO WO oo
O = OO0 O OO
O OO o oo

S

~—

we have
nBLOCK =3 and bLOCKsTRUCT = (3, 2, —2)
If

F =

* ok X

* ok
* * |, where x denotes a real number,
* ok

is a usual symmetric matrix with no block diagonal structure, we define
nBLOCK =1 and bLOCKsTRUCT =3

We separately write each of nBLOCK and bLOCKsTRUCT in one line. Any letter after either
of nBLOCK and bLOCKsTRUCT through the end of the line is neglected. In addition to blank
letter(s), and the tab code(s), we can use the letters

) {3

to separate elements of the block structure vector bLOCKsTRUCT. We have

nBLOCK
bLOCKsTRUCT

N =
]

in Example 1 (see the file “examplel.dat” in Section 3.1), and

3 = nBLOCK
2 3 -2 = bLOCKsTRUCT

in Example 2 (see the file “example2.dat” in Section 3.2). In either case, the letters “= nBLOCK”
and “= bLOCKsSTRUCT” are neglected.

4.7. Constant Vector

We write all the elements ¢, ¢, ..., ¢, of the cost vector ¢. In addition to blank letter(s) and
tab code(s), we can use the letters
() {1}
)

to separate elements of the vector ¢. We have

{48, -8, 20}

in Example 1 (see the file “examplel.dat” in Section 3.1), and
{1.1, -10, 6.6, 19, 4.1}

in Example 2 (see the file “example2.dat” in Section 3.2).

4.8. Constraint Matrices.

According to the format with the use of nBLOCK and bLOCKsTRUCT stated in Section 3.6, we
describe the constraint matrices Fy, Fy, ..., F,,. In addition to blank letter(s) and tab code(s),
we can use the letters

) {1}
to separate elements of the matrices Fg, F'1, ..., F,, and their elements. In the general case of
the block diagonal matrix F' given in (1), we write the elements of By, By, ... , By sequentially;

when B; is a diagonal matrix, we write only the diagonal element sequentially. If the matrix F' is
given by (2) (nBLOCK = 3, bLOCKsTRUCT = (3,2, —2)), the corresponding representation of
the matrix F' turns out to be

{{{1t 2 3+{2 4 5r{3 5 63}, {{1 2} {2 3}}, 4, 5}

In Example 1 with nBLOCK = 1 and bLOCKsTRUCT = 2, we have

{ {-11, o}, {0, 23} }
{ {10, 4, {4, 0} 7
{{ o, 0}, {0, -8+1}
{{ o, -8}, {-8, -2} %}

See the file “examplel.dat” in Section 3.1.
In Example 2 with nBLOCK = 3 and bLOCKsTRUCT = (2,3, —2), we have

{
{{-1.4, -3.2 %},
{-3.2,-28 1} 1}
{ {15, -12, 2.1 3},
{-12, 16, -3.8 %},
{ 2.1, -3.8, 15 } }
{ 1.8, 4.0}
}
{
{{ 0.5, 5.2},
{ 5.2, 5.3} }
{{ 7.8, -2.4, 6.0},
{-2.4, 4.2, 6.57%,
{ 6.0, 6.5, 2.1} }
{ -4.5, -3.5 }
}
[
[J
[
{
{{-6.5, -5.4 },
{-5.4, 6.6+ 1}

{{ 6.7, -7.2, -
{-7.2, 7.8, -
{ -3.6, -3.0, -
{ 6.1, -1.5 }

}

See the file

“example2.dat” in Section 3.2.

Remark. We could also write the input data of Example 1 without using any letters

such as

"Example 1: mDim

3
1
2
48
-11
10
0
0

5.

-8 20
0 0 23
4 4
0 0 -8
-8 -8 -2

) 43

3, nBLOCK = 1, {2}"

Parameter File.

First we show the default parameter file “param.sdpa” below.

40
1.0E-
1.0E2
2.0
-1.0E
1.0E5
0.1
0.2
0.9
1.0E-

unsigned int maxIteration;
7 double 0.0 < epsilonStar;

double
double
5 double
double
double
double
double
7 double

0.0
1.0

< lambdaStar;
< megaStar;

lowerBound;
upperBound;

0.0
0.0
0.0
0.0

<= betaStar < 1.0;
<= betaBar < 1.0,
< gammaStar < 1.0;
< epsilonDash;

betaStar <= betaBar;

The file “param.sdpa” needs to have these 9 lines which respectively presents 9 parameters. Each
line of the file “param.sdpa” contains one of the 9 parameters followed by any comment. When
the SDPA reads the file “param.sdpa”, it neglects the comment.

e maxlteration — The maximum number of iterations. The SDPA stops when the iteration
exceeds the maxIteration.

10

e epsilonStar, epsilonDash — The accuracy of an approximate optimal solution of the SDP.
When the current iterate (¥, X k. Yk) is satisfies the inequalities

m
epsilonDash > max {‘[Xk — Z Fixk 4+ Foly,
i=1

: p,q—1,2,...,n},

epsilonDash > max { ‘FZ oYF_¢;

:i:1,2,...,m},
>y ci:cf —Fge Yk|
max{(| S ciak| 4 |[Fo e Y)) /2.0, 1.0}

|the primal objective value — the dual objective value|
max {(|the primal objective value| + |the dual objective value|)/2.0, 1.0}’

epsilonStar >

the SDPA stops. Too small epsilonStar and epsilonDash may cause a numerical instability.
A reasonable choice is epsilonStar > 1.0E — 7.

e lambdaStar — This parameter determines an initial point (%, X 0 YO) such that
z' =0, XY =lambdaStar x I, Y° = lambdaStar x I.

Here I denotes the identity matrix. It is desirable to choose an initial point (", X 0 YO) hav-
ing the same order of magnitude as an optimal solution (z*, X*, Y ") of the SDP. In general,
however, choosing such a lambdaStar is difficult. If there is no information on the magnitude
of an optimal solution (x*, X™*, Y ™) of the SDP, we strongly recommend to take a sufficiently
large lambdaStar such that

X* < lambdaStar x I and Y* <lambdaStar x I.

e omegaStar — This parameter determines the region in which the SDPA searches an optimal
solution. For the primal problem P, the SDPA searches a minimum solution (a, X) within
the region

O < X =< omegaStar x X° = omegaStar x lambdaStar x I,

and stops the iteration if it detects that the primal problem P has no minimum solution in
this region. For the dual problem D, the SDPA searches a maximum solution Y within the
region

O <Y =< omegaStar x Y = omegaStar x lambdaStar x I,

and stops the iteration if it detects that the dual problem D has no maximum solution in
this region. Again we recommend to take a larger lambdaStar and a smaller omegaStar > 1.

e lowerBound — Lower bound of the minimum objective value of the primal problem P. When
m
the SDPA generates a primal feasible solution (z*, X k) whose objective value Z cixf‘ gets

i=1
smaller than the lowerBound, the SDPA stops the iteration; the primal problem P is likely
to be unbounded and the dual problem D is likely to be infeasible if the lowerBound is
sufficiently small.

e upperBound — Upper bound of the maximum objective value of the dual problem D. When
the SDPA generates a dual feasible solution Y'* whose objective value FpeY* gets larger than
the upperBound, the SDPA stops the iteration; the dual problem D is likely to be unbounded
and the primal problem P is likely to be infeasible if the upperBound is sufficiently large.

11

e betaStar — A parameter controlling the search direction when (x*, X%, Y*) is feasible. As
we take a smaller betaStar > 0.0, the search direction can get close to the affine scaling
direction without centering.

e betaBar — A parameter controlling the search direction when (z*, X* Y*) is infeasible.
As we take a smaller betaBar > 0.0, the search direction can get close to the affine scaling
direction without centering. The value of betaBar must be not less than the value of betaStar;
0 < betaStar < betaBar.

e gammaStar — A reduction factor for the primal and dual step lengths; 0.0 < gammaStar <
1.0.

6. Output.

6.1. Execution of the SDPA.

To execute the SDPA, we specify and type the names of three files, “sdpa”, “an input data file”
and “an output file” as follows.

% sdpa “an input data file” “an output file”

To solve Example 1, type:
% sdpa examplel.dat examplel.out
6.2. Output on the Display.

The SDPA shows some information on the display. In the case of Example 1, we have

>k 3k 3k 3K >k >k 3k 3k 3k 5k >k %k %k 5k 3k >k %k >k 3k 5k 5k >k >k 5k %k 5k 3k 5k >k >k >k >k >k 5k >k >k >k >k >k %k >k > 5k % %k %k %k %k >k

SDPA version 5.00
(C) : Kyoto University,
Tokyo Institute of Technology., 1999

* ¥ X X X
* ¥ X X ¥

>k 3k 3k 3K >k >k k 3k 3k 5k >k 5k 5k 5k 3k >k %k >k 3k 5k 5k >k >k >k %k 5k 3k 5k >k >k >k >k >k 5k >k >k >k >k >k %k >k > 5k %k %k %k %k %k >k

Search Direction = HRVW/KSH/M

mu thetaP thetaD objValP objValD alphaP alphaD beta
0 1.0e+04 1.0e+00 1.0e+00 +0.00e+00 +1.20e+03 1.0e+00 9.1e-01 0.20
1 1.6e+03 0.0e+00 9.4e-02 +8.39e+02 +7.51e+01 2.3e+00 9.6e-01 0.20
2 1.7e+02 0.0e+00 3.6e-03 +1.96e+02 -3.74e+01 1.3e+00 1.0e+00 0.20
3 1.8e+01 0.0e+00 0.0e+00 -6.84e+00 -4.19e+01 9.9e-01 9.9e-01 0.10
4 1.9e+00 0.0e+00 0.0e+00 -3.81e+01 -4.19e+01 1.0e+00 9.0e+01 0.10
5 1.9e-01 0.0e+00 0.0e+00 -4.15e+01 -4.19e+01 1.0e+00 1.0e+00 0.10
6 1.9e-02 0.0e+00 0.0e+00 -4.19e+01 -4.19e+01 1.0e+00 1.0e+00 0.10
7 1.9e-03 0.0e+00 0.0e+00 -4.19e+01 -4.19e+01 1.0e+00 1.0e+00 0.10

12

8 1.9e-04 0.0e+00 0.0e+00 -4.19e+01 -4.19e+01 1.0e+00 1.0e+00 0.10
9 1.9e-05 0.0e+00 0.0e+00 -4.19e+01 -4.19e+01 1.0e+00 1.0e+00 0.10
10 1.9e-06 0.0e+00 0.0e+00 -4.19e+01 -4.19e+01 1.0e+00 1.0e+00 0.10
phase.value = pdOPT
relative gap = 9.16e-08
gap = 3.84e-06, mu = 1.92e-06
objValPrimal -4.190000e+01
objValDual -4.190000e+01
p. feas. error = 1.776357e-14
d. feas. error = 4.796163e-13
total time in seconds = 0.010000
main loop time in seconds = 0.010000

e The 1st line — “Title and Comment” that is written on top of the input data file.

e Search direction = HRVW/KSH/M — Here the HRVW /KSH/M search direction [4, 5, 7] is
used. At the user’s option, the NT search direction [8, 10], and the AHO search direction
[1, 2] are available. See Section 6.2 for more details.

e mu — The average complementarity X*eY*/n (an optimality measure). When both P and
D get feasible, the relation

m
mu = <Zcixf—Foon>/n

i=1
the primal objective function - the dual objective function

n
holds.

e thetaP — The SDPA starts with thetaP = 0.0 if the initial point (2%, X°) of the primal
problem P is feasible, and thetaP = 1.0 otherwise; hence it usually starts with thetaP = 1.0.
In the latter case, the thetaP at the kth iteration is given by

Xk _Ssm Fak - F

thetaP = I - 71;1 ng 0”;

[X7 = 38 Fiay — Fo|

The thetaP is monotone nonincreasing, and when it gets 0.0, we obtain a primal feasible
solution (2, X*). In the example above, we obtained a primal feasible solution in the Ist
iteration.

e thetaD — The SDPA starts with thetaD = 0.0 if the initial point Y° of the dual problem
D is feasible, and thetaD = 1.0 otherwise; hence it usually starts with thetaD = 1.0. In the
latter case, the thetaD at the kth iteration is given by

(s (Fie Yk — Ci)2)1/2

thetaD = ek
(Cri(FieY? - c:)?)

The thetaD is monotone nonincreasing, and when it gets 0.0, we obtain a dual feasible
solution Y*. In the example above, we obtained a dual feasible solution in the 3rd iteration.

e objValP — The primal objective function value.

13

objValD — The dual objective function value.
alphaP — The primal step length.
alphaD — The dual step length.

beta — The search direction parameter. which takes a value in the interval [0, 1). Here Agve
and Apin, denote the average and the minimum of all the eigenvalues of X kyk As either of
X* and Y* get close to the boundary of the positive semidefinite cone, the delta gets larger.

phase.value — The status when the iteration stops, taking one of the values pdOPT, noINFO,
pFEAS, dFEAS, pdFEAS, pdINF, pFEAS_dINF, pINF_dFEAS, pUNBD and dUNBD.

pdOPT : The normal termination yielding both primal and dual approximate optimal
solutions.

noINFO : The iteration has exceeded the maxlIteration and stopped with no information
on the primal feasibility and the dual feasibility.

pFEAS : The primal problem P got feasible but the iteration has exceeded the maxIteration
and stopped.

dFEAS : The dual problem D got feasible but the iteration has exceeded the maxIteration
and stopped.

pdFEAS : Both primal problem P and the dual problem D got feasible, but the iteration
has exceeded the maxIteration and stopped.

pdINF : At least one of the primal problem P and the dual problem D is expected to be
infeasible. More precisely, there is no optimal solution (x, X,Y’) of the SDP such that

O < X < omegaStar x X0,
O <Y = omegaStar x YO,

m
Z C;T; — Fo Y.
i=1
pFEAS_dINF : The primal problem P has become feasible but the dual problem is expected
to be infeasible. More precisely, there is no dual feasible solution Y such that

O <Y =< omegaStar x Y = lambdaStar x omegaStar x I.

pINF_dFEAS : The dual problem D has become feasible but the primal problem is expected
to be infeasible. More precisely, there is no feasible solution (x, X) such that

O < X < omegaStar x XY = lambdaStar x omegaStar x I.

pUNBD : The primal problem is expected to be unbounded. More precisely, the SDPA
has stopped generating a primal feasible solution (z*, X*) such that

m
objValP = Z ¢z < lowerBound.
i=1

dUNBD : The dual problem is expected to be unbounded. More precisely, the SDPA has
stopped generating a dual feasible solution Y* such that

objValD = Fy e Y* > upperBound.

14

relative gap : The relative gap means that

lobjValP — objValD|
max {1.0, (JobjValP|+ |objValD|) /2}

gap : The gap means that mu x n.

6.3. Output to a File.

We show the content of the file “example2.out” on which the SDPA has written the computational
results of Example 2.

Data file name = example2.dat
Qutput file name example2.out

*Example 2:

«mDim = 5, nBLOCK = 3, {2,3,-2}
maxIteration = 40
epsilonStar = 1.00e-07
lambdaStar = 1.00e+02
omegaStar = 1.00e+02
lowerBound = -1.00e+07
upperBound = 1.00e+07
alphaStar = 0.00e+00
betaStar = 1.00e-01
betaBar = 2.00e-01
gammaStar = 9.00e-01
deltaStar = 1.00e+02
epsilonDash = 1.00e-07

Search Direction = HRVW/KSH/M

mu thetaP thetaD objValP objValD alphaP alphaD beta

0 1.0e+04 1.0e+00 1.0e+00 +0.00e+00 +1.44e+03 8.8e-01 6.6e-01 0.20
1 3.3e+03 1.2e-01 3.4e-01 +4.94e+02 +2.84e+02 1.0e+00 8.2e-01 0.20
2 9.0e+02 0.0e+00 6.2e-02 +8.66e+02 -2.60e+00 1.0e+00 1.0e+00 0.20
3 1.4e+02 0.0e+00 0.0e+00 +9.67e+02 +9.12e-01 9.5e-01 5.4e+00 0.10
4 1.8e+01 0.0e+00 0.0e+00 +1.46e+02 +2.36e+01 9.3e-01 1.5e+00 0.10
5 2.7e+00 0.0e+00 0.0e+00 +4.62e+01 +2.74e+01 8.1e-01 1.4e+00 0.10
6 5.7e-01 0.0e+00 0.0e+00 +3.43e+01 +3.03e+01 9.2e-01 9.3e-01 0.10
7 9.5e-02 0.0e+00 0.0e+00 +3.24e+01 +3.18e+01 9.5e-01 9.6e-01 0.10
8 1.3e-02 0.0e+00 0.0e+00 +3.21e+01 +3.20e+01 9.8e-01 1.0e+00 0.10
9 1.5e-03 0.0e+00 0.0e+00 +3.21e+01 +3.21e+01 9.9e-01 1.0e+00 0.10
10 1.5e-04 0.0e+00 0.0e+00 +3.21e+01 +3.21e+01 9.9e-01 1.0e+00 0.10
11 1.5e-05 0.0e+00 0.0e+00 +3.21e+01 +3.21e+01 9.9e-01 1.0e+00 0.10
12 1.5e-06 0.0e+00 0.0e+00 +3.21e+01 +3.21e+01 9.9e-01 1.0e+00 0.10
13 1.5e-07 0.0e+00 0.0e+00 +3.21e+01 +3.21e+01 9.9e-01 1.0e+00 0.10

Computational Result :

No of Iterations = 13

phase.value = pdOPT

mu0 = 1.000e+04

mu = 1.502e-07

15

relative gap = 3.28e-08

gap = 1.05e-06, mu = 1.50e-07

objValPrimal 3.206269e+01

objValDual 3.206269e+01

p. feas. error = 7.194245e-14

d. feas. error = 2.550848e-12

.xVect =
{+1.55164460010148541613,+0.67096725438335802494,+0.98149165903359281149,+1.406569462598729947(
.xMat =

{

{ {+6.39176521E-08,-9.63772306E-09 },

{-9.63772306E-09,+4.53939370E-08 } 1}

{ {+7.11915568E+00,+5.02467127E+00,+1.91629481E+00 },
{+5.02467127E+00,+4.41474591E+00,+2.50602213E+00 },
{+1.91629481E+00,+2.50602213E+00,+2.04812384E+00 } 1}

{+3.43246578E-01,+4.39116898E+00 }

b

.yMat =

{

{ {+2.64026632E+00,+5.60564126E-01 1},

{+5.60564126E-01,+3.71763811E+00 } }

{ {+7.61550055E-01,-1.51352507E+00,+1.13936912E+00 },
{-1.51352507E+00,+3.00802056E+00,-2.26441298E+00 },
{+1.13936912E+00,-2.26441298E+00,+1.70463144E+00 } 1}

{+4.08731192E-07,+3.19496128E-08 }

b

.xEigenValues =

{

{+0.00000006802245872866 ,+0.00000004128913035012%}

{+11.91598935316592289269,+1.66603604411658356987 ,+0.00000002984067721019}

{+0.34324657780398809548,+4.39116898405516309367%

b

.yEigenValues =

{

{+2.40151113125386528324,+3.95639329602223366322}

{+5.47420196139708803429,+0.00000001177280279186,+0.00000008420984931629%}

{+0.00000040873119209784,+0.00000003194961279829}

X

.xyEigenValues =

{

{+10000.00000000000000000000,+10000.00000000000000000000}

{+10000.00000000000000000000, +10000.00000000000000000000,+10000.00000000000000000000%}

{+10000.00000000000000000000,+10000.00000000000000000000}

b

total time in seconds = 0.020000

Now we explain items appeared above in the file “example2.out”.

e xVect — The primal variable vector «.

16

e xMat — The primal variable matrix X.
e yMat — The dual variable matrix Y.

e xEigenValues — The eigenvalues of the primal variable matrix X. All the values here must
be nonnegative so that the primal variable matrix X is positive semidefinite.

e yEigenValues — The eigenvalues of the dual variable matrix Y. All the values here must be
nonnegative so that the dual variable matrix Y is positive semidefinite.

e xyFigenValues — The eigenvalues of the matrix XY . We can verify the optimality to check
whether all the values here are sufficiently small.

7. Advanced Use of the SDPA.

7.1. Checking Input Data File.

“—c”; for example,

We can check whether input matrices are symmetric by adding the option
% sdpa example2.dat example2.out —c

In Example 2, if the matrix B of the block diagonal matrix F's was not symmetric, then the
SDPA would display an error message. For example, if

{

{{-6.5, -5.4 },
{-5.4, 6.6} }

{{ 6.7, -7.2, 3.6},
{-7.2, 7.3, -3.0 },
{-3.6, -3.0, -1.4} }
{ 6.1, -1.5 }

}

then

Matrix F[5]->block[1] is not symmetric : [0,2] = 3.600000, [2,0] = -3.600000

7.2. Three Types of Search Directions.

The SDPA version 2 incorporated three types of search directions; the search direction HRVW /KSH/M
proposed by [4, 5] (see also [7]), the search direction NT by [8], and the search direction AHO by

[1, 2]. Adding the option “-17, “-2” or “-3”, we can specify one of these search directions. For
example, if we want to use the search direction NT proposed by [8] to solve Example 2, type

% sdpa example2.dat example2.out —2

Without any of the options “-17, “-2” and or “-3”, the SDPA uses the search direction HRVW /KSH/M
proposed by [4, 5].

17

7.3. Initial Point.

If a feasible-interior solution (%, X°, Y°) is known in advance, we may want to start the SDPA
from (2%, X° Y?). In such a case, we can optinally specify a file which contains the data of a
feasible-interior solution when we execute the SDPA; for example if we want to solve Example 1
from a feasible-interior initial point

2.0
31.0 3.0 2.0 0.0
0 0 0y __
(7, X0, Y7) = 88 (3.0 5.0)(0.0 2.0) ’

type
% sdpa examplel.dat examplel.out examplel.ini

Here “examplel.ini” denotes an initial point file containing the data of a feasible-interior solution:

{0.0, -4.0, 0.0}
{ {11.0, 0.0}, {0.0, 9.0} }
{{5.9, -1.375}, {-1.375, 1.0} }

In general, the initial point file can have any name with the postfix “.ini’; for example, “example.ini”
are legitimate initial point file names. It must be placed after the output file. The other options
“—¢”, “=17, “=2” and/or “—3” can be put in any place; both

% sdpa examplel.dat examplel.out examplel.ini —c —3
% sdpa examplel.dat examplel.out —3 —c examplel.ini

are acceptable. An initial point file contains the data

20

XO
YO

0 must follow the same format

in this order, where the description of the m-dimensional vector «
as the constant vector ¢ (see Section 3.7), and the description of X O and Y the same format as

the constraint matrix F; (see Section 3.8).

7.4. Sparse Input Data File.

In Section 3, we have stated the dense data format for inputting the data m, n, ¢ € R™ and
F, eS8 (i=0,1,2,...,m). When not only the constant matrices F; € S (i = 0,1,2,...,m) are
block diagonal but also each block is sparse, the sparse data format described in this section gives
us a compact description of the constant matrices.

A sparse input data file must have a name with the postfix “.dat-s”; for example, “problem.dat-
s” and “example.dat-s” are legimate names for sparse input data files. The SDPA distinguishs a
sparse input data file with the postfix “.dat-s” from a dense input data file with the postfix “.dat”

We show below the file “examplel.dat-s”, which contains the date of Example 1 (Section 3.1)
in the sparse data format.

18

"Example 1: mDim = 3, nBLOCK = 1, {2}"

3 = mDIM

1 = nBLOCK

2 = bLOCKsTRUCT
{48, -8, 20}
0111 -11
012223
111110
11124
2122-8
3112-8
3122-2

Compare the dense input data file “examplel.dat” described in Section 3.1 with the sparse
input data file “examplel.dat-s” above . The first 5 lines of the file “examplel.dat-s” are the same
as those of the file “examplel.dat”. Each line of the rest of the file “examplel.dat-s” describes a
single element of a constant matrix F;; the 6th line “0 1 1 1 -11” means that the (1,1)th element
of the 1st block of the matrix F is —11, and the 11th line “3 1 1 2 -8” means that the (1,2)th
element of the 1st block of the matrix F'3 is —8.

In general, the structure of a sparse input data file is as follows:

Title and Comment

m — the number of the primal variables x;’s
nBLOCK — the number of blocks
bLOCKsTRUCT — the block structure vector
c

k1 b1 i1 J1 1

ko b 12 jo vo

kp bp ip Jp vp
kq bq iq Jq vg

Here k, € {0,1,...,m}, b, € {1,2,...,nBLOCK}, 1 < i, < j, and v, € R. Each line
“kp, bp, ip, Jp, vp’ means that the value of the (ip, j,)th element of the byth block of the constant
matrix F'y is vp. If the byth block is an £ x ¢ symmetric (non-diagonal) matrix then (i, j,) must
satisfy 1 <, < j, < 4; hence only nonzero elements in the upper triangular part of the b,th block
are described in the file. If the b,th block is an ¢ x ¢ diagonal matrix then (i, j,) must satisfy
1<i,=j, <l

7.5. Sparse Initial Point File.

We show below the file “examplel.ini-s”, which contains an initial point data of Example 1 in the
sparse data format.

{0.0, -4.0, 0.0}
1 1
1

1111
1229

19

Compare the dense initial point file “examplel.ini” described in Section 6.3 with the sparse
initial file “examplel.ini-s” above . The first line of the file “examplel.ini-s” is the same as that
of the file “examplel.ini”, which describes " in the dense format. Each line of the rest of the file
“examplel.ini-s” describes a single element of an initial matrix X if the first number of the line
is 1 or a single element of an initial matrix Y if the first number of the line is 2; The 2nd line
“1 111 11” means that the (1,1)th element of the 1st block of the matrix X is 11, the 5th line
“2 11 2-1.375" means that the (1,2)th element of the 1st block of the matrix Y is —1.375.

3

A sparse initial point file must have a name with the postfix “.ini-s”; for example, “problem.ini-
s” and “example.ini-s” are legimate names for sparse input data files. The SDPA distinguishs a
sparse input data file with the postfix “.ini” from a dense input data file with the postfix “.ini-s”

[43

In general, the structure of a sparse input data file is as follows:

CEO

s1 by i1 J1 v1
89 by i Jo Vo

Sp bp ip Jp Up
Sq bq iq, Jq Vg

Here s, =1 or 2, b, € {1,2,...,nBLOCK}, 1 < i, < j, and v, € R. When s, = 1, each line
“sp bp ip jp vp” means that the value of the (i, j,)th element of the b,th block of the constant
matrix X is v,. When s, = 2, the line “s, b, i, j, v,” means that the value of the (i,,j,)th
element of the b,th block of the constant matrix Y is vp. If the byth block is an £ x £ symmetric
(non-diagonal) matrix then (i,,j,) must satisfy 1 < i, < j, < ¢; hence only nonzero elements in
the upper triangular part of the b,th block are described in the file. If the b,th block is an ¢ x ¢
diagonal matrix then (ip, j,) must satisfy 1 <i, = j, < /.

7.6. More on Parameter File.

We may encounter some numerical difficulty during the execution of the SDPA with the default
parameter file “param.sdpa’, and/or we may want to solve many easy SDPs with similar data
more quickly. In such a case, we need to adjust some of the defualt parameters, betaStar, betaBar,
gammaStar and deltaStar. We presnt below two sets of those parameters. The one is the set
“Stable_but_Slow” for difficult SDPs, and the other is the set “Unstable_but_Fast” for easy SDPs.

Stable_but_Slow
0.10 double 0.0 <= betaStar < 1.0;
1.0

0.20 double 0.0 <= betaBar <

, betaStar <= betaBar;
0.90 double 0.0 < gammaStar < 1.0;

Unstable_but_Fast

20

0.01 double 0.0 <= betaStar < 1.0;
0.02 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.98 double 0.0 < gammaStar < 1.0;

Besides these parameters, the value of the parameter lambdaStar, which determines an initial
point (20, X°, YY), affects the computational efficiency and the numerical stability. Usually a
larger lambdaStar is safe although the SDPA may consume a few more iterations.

8. The Callable Library of SDPA

The easiest way to understand how to use the callable library is to look at example files. For
this purpose, we have chosen a problem “Examplel” in Section 2. Here consider several cases
when solving problems with the callable library. Roughly speaking, we provides two usages for
this callable library. The first usage needs input data, output and initial point files (Case 1). And
you can also generate your own problem in your C++ source file and solve this problem directly
by calling several functions of the callable library (Case 2).

8.1. Case 1:

As we have already seen in Section 2, to solve Examplel, type:
% sdpa examplel.dat examplel.out

We show below a source program in the “examplel-1.cpp” for reading a problem from an input
data file examplel.dat and putting its output into an output file examplel.out. To compile and
execute this source file, one type:

make PROG=examplel-1
examplel-1 examplel.dat examplel.out

/* The beginning of the ‘‘examplel-1.cpp’’. */
#include <stdio.h>

#include <stdlib.h>

#include "sdpa-lib.hpp"
#include "sdpa-1ib2.hpp"

int main (int argc, char *argv[])

{
if (argc != 3)
{
fprintf(stderr, "%s [Input] [Output] \n", argv[0]);
exit (EXIT_FAILURE);
}

SDPA Problemil;

Probleml.Method = KSH;

21

strcpy(Probleml.ParameterFileName, "param.sdpa");
Probleml.ParameterFile = fopen(Probleml.ParameterFileName, "r");
strcpy(Probleml.InputFileName, argv[1]);

Probleml.InputFile = fopen(Probleml.InputFileName,"r");
strcpy(Probleml.OutputFileName, argv([2]);

Probleml.0OutputFile = fopen(Probleml.OutputFileName,"w");

Probleml.DisplayInformation = stdout;

SDPA_initialize(Probleml);
SDPA_Solve(Probleml);

fclose(Probleml.InputFile);
fclose(Probleml.QutputFile);

Probleml.Delete();

exit (0);
s
/* The end of the ‘‘examplel-1.cpp’’. */

To use the SDPA library functions, one needs to several header files as follows:

4

/* The beginning of the ‘‘examplel-1.cpp’’. */
#include <stdio.h>

#include <stdlib.h>

#include "sdpa-lib.hpp"
#include "sdpa-1ib2.hpp"

Notice that all header files must be in the same directory. We needs to declare a object (variable),
what we call Probleml, that is a object to the class SDPA in the header file sdpa-lib2.hpp.

SDPA Problemi;

After this declaration, one usually select a search direction among HRVW /KSH/M (KSH), NT (NT)
and AHO (AHO) directions. If one will not select a search direction, the default direction will be
set to KSH.

Probleml.Method = KSH;

The next procedures are very important and one must carefully specify the file names and their
file pointers.

strcpy(Probleml.ParameterFileName, "param.sdpa");
Probleml.ParameterFile = fopen(Probleml.ParameterFileName, "r");
strcpy(Probleml.InputFileName, argv[1]);

Probleml.InputFile = fopen(Probleml.InputFileName,"r");
strcpy(Probleml.OutputFileName, argv[2]);

Probleml.0OutputFile = fopen(Probleml.OutputFileName,"w");

22

One will not necessarily set a parameter file name to “param.sdpa”. Because this callable library
also distinguishes the dense data format with the postfix “.dat” from the sparse data format with
the postfix “dat-s” and one must copy the file names to ParameterFileName, InputFileName and
OutputFileName, respectively.

If one wants to show some informations on the display, the following line will be needed (the
default value is NULL).

Probleml.DisplayInformation = stdout;

After calling the function SDPA_initialize(SDPA &), we are now ready to put the call to the
solver in the calling routine SDPA_Solve (SDPA &).

SDPA_initialize(Probleml);
SDPA_Solve(Probleml);

Finally, one closes all used file pointers and free a object Probleml from the computational
memory space by calling the function Delete().

fclose(Probleml.InputFile);
fclose(Probleml.OutputFile);

Probleml.Delete();

See also “exmaplel-2.cpp”, which reads a problem from an input data file, an initial point data
file, and puts its output into an output file.

8.2. Case 2:

In this section, we show how to generate a problem in our source file and solve this by calling the
functions. The C++ source program below is contained in the “example2-1.cpp”’. To compile
and execute this source file, one type:

make PROG=example2-1
example2-1

4

/* The beginning of the
#include <stdio.h>
#include <stdlib.h>

‘example2-1.cpp’’. */

#include "sdpa-lib.hpp"
#include "sdpa-1ib2.hpp"

/*
examplel.dat:

"Example 1: mDim = 3, nBLOCK = 1, {2}"
3 = mDIM

23

1 = nBOLCK

2 = DbLOCKsTRUCT
{48, -8, 20}
{ {-11, o}, {0, 23} }
{{10, 4}, {4, 0} 7}
{{ o, o}, {0, -8} 1}
{{ o, -8}, {-8, -2} }
*/

/*

examplel.ini:

{0.0, -4.0, 0.0}

{ {11.0, 0.0}, {0.0, 9.0} }
{{5.9, -1.375}, {-1.375, 1.0} }
*/

boolean MatrixDisplay(int mRow, int nCol, double** element, FILEx outFile);
boolean VectorDisplay(int nDim, double* element, FILEx outFile);

int main ()

{
int mRow, nCol;
doublex*x* element;
doublex* element?2;

SDPA Problemi;

Probleml.Method = KSH;
Probleml.InitialPoint = true;
Probleml.pARAM.maxIteration = 50;
Probleml.pARAM.epsilonStar = 1.0E-8;
Probleml.pARAM.lambdaStar = 1.0E2;
Probleml.pARAM.omegaStar = 2.0;
Probleml.pARAM. lowerBound = -1.0E5;
Probleml.pARAM.upperBound = 1.0E5;
Probleml.pARAM.betaStar =0.1;
Probleml.pARAM.betaBar 0.2;
Probleml.pARAM.gammaStar =0.9;
Probleml.DisplayInformation = stdout;

SDPA_initialize(Probleml);

Probleml.mDIM = 3;
Probleml.nBLOCK = 1;
Probleml.bLOCKsTRUCT
Problemil.bLOCKSTRUCT [0]

new int [Problemi.nBLOCK];
2;

24

//

//

//

//

//

//

//

//

//

//

//

//

SDPA_initialize2(Probleml);

cVECT = {48, -8, 20}
SDPA_Input_cVECT(Probleml, 1, 48);
SDPA_Input_cVECT(Probleml, 2, -8);
SDPA_Input_cVECT(Probleml, 3, 20);

F_0={{-11, o0}, {0, 23} }
SDPA_CountUpperTriangle (Probleml, O,

F1={{10, 4}, {4, 0} 1}
SDPA_CountUpperTriangle (Probleml, 1,

F2={{ o0, 0}, {0, -8+ 1}
SDPA_CountUpperTriangle (Probleml, 2,

F3={{ 0, -8}, {-8, -2} }
SDPA_CountUpperTriangle (Probleml, 3,

SDPA_Make_sfMAT(Probleml) ;

FO0={{-11, 0}, {0, 23} }
SDPA_InputElement (Probleml, 0, 1, 1,
SDPA_InputElement (Probleml, 0, 1, 2,

F1={{10, 4}, {4, 0} 1}
SDPA_InputElement (Probleml, 1, 1, 1,
SDPA_InputElement (Probleml, 1, 1, 1,

F2={4{ o, 0}, {0, -8}7%
SDPA_InputElement (Probleml, 2, 1, 2,

F3=4{{ o0, -8}, {-8, -2} }
SDPA_InputElement (Probleml, 3, 1, 1,
SDPA_InputElement (Probleml, 3, 1, 2,

Xx~0 = { {11.0, 0.0}, {0.0, 9.0} }
SDPA_Input_IniXMat(Probleml, 1, 1, 1
SDPA_Input_IniXMat(Probleml, 1, 2, 2

x~0 = {0.0, -4.0, 0.0}
SDPA_Input_InixVec(Probleml, 2, -4);

Yy°0=44{5.9, -1.375}, {-1.375, 1.0} }
SDPA_Input_IniYMat(Probleml, 1, 1, 1

25

1, 2);

1, 1);

1, _11);
2, 23);

1, 10);
2, 4);

2, -8);

2, -8);
2, -2);

, 11);
, 93

, 5.9);

SDPA_Input_IniYMat(Probleml, 1, 1, 2, -1.375);
SDPA_Input_IniYMat(Probleml, 1, 2, 2, 1);

SDPA_Solve (Probleml) ;

fprintf (stdout, "\nStop iteration = Jd\n", Probleml.Iteration);
fprintf(stdout, "objValPrimal = %10.6e\n", Probleml.PrimalObj);
fprintf (stdout, "objValDual = %10.6e\n", Probleml.DualObj);
fprintf (stdout, "p. feas. error = %10.6e\n", Probleml.PrimalError);
fprintf(stdout, "d. feas. error = %10.6e\n\n", Probleml.DualError);

printf ("\nxVec = \n");
Probleml.xVec.display(stdout) ;

mRow = Probleml.xVec.nDim;
element2 = Probleml.xVec.element;
VectorDisplay(mRow, element2, stdout);

printf("\nxMat = \n");
Probleml.XMat.display(stdout) ;

if (Probleml.XMat.nBlock > 1) fprintf(stdout, "{\n");
for(int k = 0; k < Probleml.XMat.nBlock; k++)

{
mRow = Probleml.XMat.block[k] .mRow;
nCol = Probleml.XMat.block[k] .nCol;
element = Probleml.XMat.block[k].element;
MatrixDisplay(mRow, nCol, element, stdout);
}

if (Probleml.XMat.nBlock > 1) fprintf(stdout, "}\n\n");
printf ("\nxMat = \n");
Probleml.YMat.display(stdout) ;

if (Probleml.YMat.nBlock > 1) fprintf(stdout, "{\n");
for(int k = 0; k < Probleml.YMat.nBlock; k++)

{
mRow = Probleml.YMat.block[k] .mRow;
nCol = Probleml.YMat.block[k] .nCol;
element = Probleml.YMat.block[k].element;
MatrixDisplay(mRow, nCol, element, stdout);
}

if (Probleml.YMat.nBlock > 1) fprintf(stdout, "}\n\n");

26

Probleml.Delete();

exit (0);

boolean MatrixDisplay(int mRow, int nCol, double** element, FILE *outFile)

fprintf (outFile, "{");
for(int i = 0; i < mRow-1; i++)

{
if (1 == 0)
fprintf (outFile," ");
else
fprintf (outFile," ");
fprintf (outFile, "{");
for(int j = 0; j < nCol-1; j++)
fprintf (outFile, "%+8.8E,",element[i] [j]);
fprintf (outFile,"%+8.8E },\n",element[i] [nCol-1]);
}

if (mRow > 1)

fprintf (outFile," {");
for(int j = 0; j < nCol-1; j++)

fprintf (outFile, "%+8.8E,",element[mRow-1][j]);
fprintf (outFile, "%+8.8E }",element [mRow-1] [nCol-1]);
if (mRow > 1)

fprintf (outFile," }\n");
else

fprintf (outFile,"\n");

return true;

boolean VectorDisplay(int nDim, doublex element, FILE *outFile)

fprintf (outFile, "{");
for(int 1 = 0; i < nDim-1; i++)
fprintf (outFile, "%+8.3E,",element[i]);
if (aDim > 0)
fprintf (outFile, "%+8.3E}\n",element[nDim-1]);
else
fprintf (outFile," }\n");

return true;

};
/* The end of the ‘‘example2-1.cpp’’. */

One needs to four header files and declare a object, say Probleml like Case 1. For example,
if you want to use the iostream which provides C++ input/output, “#include <iostram.h>"

27

must be added to this source file.

/* The beginning of the ‘‘examplel-1.cpp’’. */
#include <stdio.h>

#include <stdlib.h>

#include "sdpa-lib.hpp"
#include "sdpa-1ib2.hpp"

int main ()

{
SDPA Probleml;

The variable Probleml is generated as a object to the class SDPA with a call to SDPA: : SDPAQ).

Probleml.Method = NT;
Probleml.InitialPoint

true;

In this case, we select the N'T direction and set an initial point.

Probleml.pARAM.maxIteration = 50;
Probleml.pARAM.epsilonStar = 1.0E-8;
Probleml.pARAM.lambdaStar = 1.0E2;

Probleml.pARAM.omegaStar = 2.0;

Probleml.pARAM. lowerBound = -1.0E5;
Probleml.pARAM.upperBound = 1.0E5;
Probleml.pARAM.betaStar =0.1;
Probleml.pARAM.betaBar =0.2;
Probleml.pARAM.gammaStar = 0.9;

As we have seen in Section 5, the SDPA has 9 parameters which controls a search direction
and decides a stopping-criterion. One must input these parameters from a parameter file like Case
1, or set all fields of a object Probleml.pARAM to a class parameterClass as above.

Probleml.DisplayInformation = stdout;

SDPA_initialize(Probleml);

Probleml.mDIM 3;
Probleml.nBLOCK 1;
Probleml.bLOCKsTRUCT
Probleml.bLOCKsTRUCT [0]

new int [Problemi.nBLOCK];
2;

After calling the SDPA_initialize(Probleml), we begin by specifying the number of the
primal variables, the block and block structure vector. If the meaning of bLOCKsTRUCT is not clear,
one refers the Section 4. We can also implement the declaration of bLOCKsTRUCT as follows:

28

Probleml.bLOCKsTRUCT = (int *)malloc(Probleml.nBLOCK * sizeof (int));

One must pay attention to put the call SDPA_initialize2(Probleml) after setting mDIM,
nBLOCK and bLOCKsTRUCT above. Here the array cVECT(mDIM) must be set as follows:

SDPA_initialize2(Probleml);

// cVECT = {48, -8, 20}
SDPA_Input_cVECT(Probleml, 1, 48);
SDPA_Input_cVECT(Probleml, 2, -8);
SDPA_Input_cVECT(Probleml, 3, 20);

Next we set the number of nonzero elements of the upper triangular part of each block of
each Fi(i =0,...,m).

// F_0={{-11, o0}, {0, 23} }
SDPA_CountUpperTriangle (Probleml, 0, 1, 2);

// F.1={{10, 4}, {4, 0}}
SDPA_CountUpperTriangle (Probleml, 1, 1, 2);

// rF2={{ o0, 0}, {0, -8+1}
SDPA_CountUpperTriangle(Probleml, 2, 1, 1);

// F3={1{ o0, -8}, {-8, -2} }
SDPA_CountUpperTriangle (Probleml, 3, 1, 2);

Here SDPA CountUpperTriangle(Probleml, O, 1, 2) means that the number of nonzero
elements of the upper triangular part of 1st block of the constant matrix Fy is 2.

SDPA_Make_sfMAT (Probleml) ;
SDPA_InputElement (Problemi, 0, 1, 1, 1, -11);
SDPA_InputElement (Probleml, 0, 1, 2, 2, 23);

SDPA_InputElement (Probleml, 1, 1, 1, 1, 10);
SDPA_InputElement (Probleml, 1, 1, 1, 2, 4);

SDPA_InputElement (Probleml, 2, 1, 2, 2, -8);

SDPA_InputElement (Probleml, 3, 1, 1, 2, -8);
SDPA_InputElement (Problemi, 3, 1, 2, 2, -2);

After calling the SDPA Make sfMAT (Probleml), we must set only nonzero elements of the upper
triangular part of each block. The call SDPA_InputElement (Probleml, 1, 1, 1, 2, 4) means
that the (1,2) element of the 1 st block of the matrix F'; is 4, SDPA_InputElement (Probleml,
3, 1, 2, 2, -2) means that the (2,2) element of the 1 st block of the matrix F's is -2.

Similarly, if one needs, the initial point must therefore be initialized as follows:

29

// X~0 = { {11.0, 0.0}, {0.0, 9.0} }
SDPA_Input_IniXMat(Probleml, 1, 1, 1, 11);
SDPA_Input_IniXMat(Probleml, 1, 2, 2, 9);

// x~0 = {0.0, -4.0, 0.0}
SDPA_Input_InixVec(Probleml, 2, -4);

// Yy'0=4{+4{5.9, -1.375}, {-1.375, 1.0} }
SDPA_Input_IniYMat(Probleml, 1, 1, 1, 5.9);

SDPA_Input_IniYMat(Probleml, 1, 1, 2, -1.375);
SDPA_Input_IniYMat(Probleml, 1, 2, 2, 1);

Here the call SDPA_Input_IniXMat(Probleml, 1, 2, 2, 9) means that the (2,2) element of
theIlstkﬂod&ofthernahix)(oi59,SDPA_Input_IniYMat(Probleml, 1, 1, 2, -1.375) means
that the (1,2) element of the 1 st block of the matrix Y is -1.375.

We are now ready to put the call to the solver in the calling routine SDPA_Solve (SDPA &). In
this case, we output the total number of iteration, the primal objective function value, the dual
objective function value and other final informations on the display.

SDPA_Solve(Probleml) ;

fprintf (stdout, "\nStop iteration = %d\n", Probleml.Iteration);
fprintf(stdout, "objValPrimal = %10.6e\n", Probleml.PrimalQbj) ;
fprintf (stdout, "objValDual = %10.6e\n", Probleml.DualObj);
fprintf (stdout, "p. feas. error = %10.6e\n", Probleml.PrimalError);
fprintf(stdout, "d. feas. error = %10.6e\n\n", Probleml.DualError);

Next, we output the final solution (x,X,Y’) on the display. If we need (x,X,Y’) in our
program, we convert the following procedures.

printf("\nxVec = \n");
// Probleml.xVec.display(stdout) ;

mRow Probleml.xVec.nDim;
element?2 Probleml.xVec.element;
VectorDisplay(mRow, element2, stdout);

printf("\nxMat = \n");
// Probleml.XMat.display(stdout) ;

if (Probleml.XMat.nBlock > 1) fprintf(stdout, "{\n");
for(int k = 0; k < Probleml.XMat.nBlock; k++)

{
mRow = Probleml.XMat.block[k] .mRow;
nCol = Probleml.XMat.block[k] .nCol;
element = Probleml.XMat.block[k].element;

30

//

MatrixDisplay(mRow, nCol, element, stdout);

}
if (Probleml.XMat.nBlock > 1) fprintf(stdout, "}\n\n");

printf ("\nxMat = \n");
Probleml.YMat.display(stdout) ;

if (Probleml.YMat.nBlock > 1) fprintf(stdout, "{\n");
for(int k = 0; k < Probleml.YMat.nBlock; k++)

{
mRow = Probleml.YMat.block[k] .mRow;
nCol = Probleml.YMat.block[k] .nCol;
element = Probleml.YMat.block[k].element;
MatrixDisplay(mRow, nCol, element, stdout);
}

if (Probleml.YMat.nBlock > 1) fprintf(stdout, "}\n\n");

Finally, one closes all used file pointers and free a object Probleml from the computational

memory space by calling the function Delete().

Probleml.Delete();

See also “example2-2.cpp”, which generates a problem corresponds to example2.dat ans solves

this by calling the functions.

References

1]

2]

F. Alizadeh, J. -P. A. Haeberly and M. L. Overton, “Primal-dual interior-point methods for
semidefinite programming,” Working Paper, 1994.

F. Alizadeh, J. -P. A. Haeberly and M. L. Overton, “Primal-dual interior point methods for
semidefinite programming: convergence rates, stability and numerical results,” Report 721,
Computer Science Department, New York University, New York, NY, 1966.

K. Fujisawa, M. Kojima and K. Nakata, “Exploiting Sparsity in Primal-Dual Interior-Point
Methods for Semidefinite Programming,” Mathematical Programming 79 (1997) 235-253.

C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, “An interior-point method for
semidefinite programming,” SIAM Journal on Optimization 6 (1996) 342-361.

M. Kojima, S. Shindoh and S. Hara, “Interior-point methods for the monotone semidefinite
linear complementarity problems,” Research Report #282, Dept. of Mathematical and Com-
puting Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152, Japan,
April 1994, Revised October 1995. To appear in SIAM Journal on Optimization.

S.Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM Journal
on Optimization 2 (1992) 575-601.

31

[7]

R.D.C. Monteiro, “Primal-dual path following algorithms for semidefinite programming,”
Working Paper, School Industrial and Systems Engineering, Georgia Tech., Atlanta, GA
30332, September 1995. To appear in SIAM Journal on Optimization.

Ju. E. Nesterov and M. J. Todd, “Self-scaled cones and interior-point methods in nonlinear
programming,” Working Paper, CORE, Catholic University of Louvain, Louvain-la-Neuve,
Belgium, April 1994.

D. E. Stewart and Z. leyd, Meschach: Matrix Computation in C,” Proceedings of the Center
for Mathematics and Its Applications, The Australian National University, Volume 32, 1994.

M. J. Todd, K. C. Toh and R. H. Tiitlincii, “On the Nesterov-Todd direction in semidefinite
programming,” Technical Report, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, NY 14853-3801, USA, 1996.

32

