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In resent years, semidefinite program (SDP) has been intensively studied both in theoretical and
practical aspects of various fields including interior-point methods, combinatorial optimization
and the control and systems theory. The SDPA (SemiDefinite Programming Algorithm) [4] is a
C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for
solving the standard form semidefinite program. The SDPA incorporates data structures for han-
dling sparse matrices and an efficient method proposed by Fujisawa et al. [5] for computing search
directions when problems to be solved are large scale and sparse. Finally, we report numerical
experiments of the SDP for the structural optimization under multiple eigenvalue constraints.

1 Introduction.

The main purpose of this paper is to explain the implementation of SDPA (SemiDefinite Program-
ming Algorithm) [4] for semidefinite programs and report some numerical experiments of SDPA.
Besides SDPA, there are some computer programs SDPpack [2], SDPSOL [19], CSDP [3], SDPHA
[15] and SDPT3 [17] for semidefinite programs which are available through the Internet. The SDPA
is a C++ implementation of a Mehrotra-type [10] primal-dual predictor-corrector interior-point
method. Although three types of search directions, the HRVW/KSH/M direction [9], the NT
direction [13] and the AHO direction [1] are available in SDPA, we employed the HRVW/KSH/M
direction in our numerical experiments because its computation is the cheapest among the three
directions (particularly, for sparse data matrices) when we employ the method proposed by Fu-
jisawa et al. [5]. Monteiro et al. [12] recently showed that in theory, the NT direction requires
less computation for dense matrices. However, their method needs large amount of computational
memory and does not efficiently exploit the sparse data structures. Actually, according to their
numerical results, the computation of the HRVW/KSH/M direction is favorable compared to the
the computation of the NT and AHO directions.

Let Rn×n and Sn ⊂ Rn×n denote the set of all n× n real matrices and the set of all n× n real
symmetric matrices, respectively. We use the notation U•V for the inner product of U , V ∈ Rn×n,
i.e., U • V =

∑n
i=1

∑n
j=1 UijVij, where Uij and Vij denote the (i, j)th element of U and V ,

respectively. We write X � O and X � O when X ∈ Sn is positive semidefinite and positive
definite, respectively.

Let Ai ∈ Sn (0 ≤ i ≤ m) and bi ∈ R (1 ≤ i ≤ m). SDPA solves the standard form semidefinite
program and its dual:

P : minimize A0 •X subject to Ai •X = bi (1 ≤ i ≤ m), X � O.

D: maximize
m∑

i=1

biyi subject to
m∑

i=1

Aiyi + Z = A0, Z � O.


 (1)

For simplicity, we say that (X,y,Z) is a feasible solution (an interior-feasible solution, or an
optimal solution, respectively) of the SDP (1) if X is a feasible solution (an interior-feasible
solution, i.e., a feasible solution satisfying X � O or a minimizing solution, respectively) of P and
(y,Z) is a feasible solution (an interior-feasible solution, i.e., a feasible solution satisfying Z � O
or a maximizing solution, respectively) of D.

In Section 2, we present some issues on the implementation of SDPA which are relevant for our
numerical experiments. Section 3 is devoted to SDPs for structural optimization under multiple



eigenvalue constraints. In Section 4, we present numerical results of the SDPA. Section 5 gives
conclusions.

2 Some Issues of the Implementation of SDPA.

In this section, we describe the data structures for handling block diagonal matrices and the
HRVW/KSH/M search direction both used in SDPA. Finally, we explain the algorithmic frame-
work of SDPA.

2.1 Data Structures

The SDPA can handles block diagonal matrices. In terms of the number of blocks, denoted by
nBLOCK, and the block structure vector, denoted by bLOCKsTRUCT, we express a common
matrix data structure for the constraint matrices A0, A1, . . . , Am. If we deal with a block
diagonal matrix A of the form

A =




B1 O O · · · O
O B2 O · · · O
· · · · · · O

O O O · · · B�


 ,

Bi : a pi × pi symmetric matrix (i = 1, 2, . . . , �),


 (2)

we define the number nBLOCK of blocks and the block structure vector bLOCKsTRCTURE as
follows:

nBLOCK = �,

bLOCKsTRUCT = (β1, β2, . . . , β�),

βi =
{

pi if Bi is a symmetric matrix,
−pi if Bi is a diagonal matrix.

For example, if A is of the form 


1 2 3 0 0 0 0
2 4 5 0 0 0 0
3 5 6 0 0 0 0
0 0 0 1 2 0 0
0 0 0 2 3 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 5



, (3)

we have

nBLOCK = 3 and bLOCKsTRUCT = (3, 2, −2).

2.2 Search Direction.

The HRVW/KSH/M direction is the solution (dX , dy, dZ) of the system of equations

Ai • dX = pi (1 ≤ i ≤ m), dX ∈ Sn, (4)
m∑

i=1

Aidyi + dZ = D, dZ ∈ Sn, (5)

d̂XZ + XdZ = K, d̂X ∈ Rn×n, dX = (d̂X + d̂X
T
)/2. (6)
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Here pi ∈ R, D ∈ Sn and K ∈ Rn×n denote a scalar constant, an n × n constant symmetric
matrix, and an n × n constant matrix, respectively, which are determined by the current point
(X,y,Z) and some other factors. Note that d̂X ∈ Rn×n serves as an auxiliary variable matrix.
Under the linear independence assumption on the set {Ai : 1 ≤ i ≤ m} of constraint matrices, we
know [9] that for any X � O, Z � O, pi ∈ R (1 ≤ i ≤ m), D ∈ Sn, and K ∈ Rn×n, the system
of equations (4), (5) and (6) has a unique solution (dX, dy, dZ).

We can reduce the system of equations (4), (5) and (6) to

Bdy = b, (7)

dZ = D −
m∑

i=1

Aidyi,

d̂X = (K −XdZ)Z−1, dX = (d̂X + d̂X
T
)/2,


 (8)

where

Bij = XAiZ
−1 •Aj (1 ≤ i ≤ m, 1 ≤ j ≤ m)

bi = pi − (K −XD)Z−1 •Ai (1 ≤ i ≤ m).

}
(9)

The matrices X , Z−1 and B are symmetric and dense in general even when all Ai (1 ≤ i ≤ m)
are sparse. Hence solving the system of equations (7) in dy by using a direct method such as the
Cholesky factorization and the LDLT factorization of B requires O(m3) arithmetic operations.
On the other hand, if we treat all Ai (1 ≤ i ≤ m) as dense matrices and if we use the above
formulae (9) for the coefficient matrix B in a straightforward way, the computation of B requires
O(mn3 + m2n2) arithmetic operations. Therefore computing the coefficient matrix B is more
crucial than solving Bdy = b in the entire computation of the HRVW/KSH/M direction.

In their paper [5], Fujisawa, Kojima and Nakata proposed three distinct formulae F 1, F2 and
F3 for computing B, and their efficient combination F ∗. They demonstrated through numerical
experiments that the combined formula F ∗ worked very efficiently when some of Ai (1 ≤ i ≤ m)
are sparse. We incorporated their formula F ∗ into SDPA. See the paper [5] for more details.

2.3 The Algorithmic Framework of SDPA.

Step 0 : Set an initial point (X 0,y0,Z0) with X0 � O,Z0 � O. Decide on the search direction
to use. Set the parameters: 0.0 < ε∗, 1 < ω∗, 0.01 ≤ β∗ ≤ 0.10 and β∗ ≤ β̄ ≤ 0.20. (The
default values of these parameters are: ε∗ = 1.0E− 5, ω∗ = 2.0, β∗ = 0.05 and β̄ = 0.1). Let
k = 0.

Step 1 : If the current iterate (Xk,yk,Zk) is feasible and the relative gap

|P −D|
max {1.0, (|P |+ |D|)/2}

gets smaller than ε∗, then stop the iteration. Here P and D denote the primal and the dual
objective values, respectively. If we detect that there is no feasible solution (X,y,Z) such
that ω∗X0 � X � O and ω∗Z0 � Z � O, then stop the iteration. See [9] for details on
how to get such information on infeasibility.

Step 2 : (Predictor Step) Let

βp =
{

0 if the current iterate is feasible,
β̄ otherwise.

Solve the system of equations (4), (5) and (6) with K = βp(X •Z/n)I −XZ to compute
the predictor direction (dX p, dyp, dZp).
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Step 3 : (Corrector Step) Let

β =
(X + ᾱpdXp) • (Z + ᾱddZp)

(X •Z)
,

where ᾱp and ᾱd are computed as in [6]. Choose the parameter βc as follows:

βc =




max{β∗, β2} if the current iterate is feasible and β ≤ 1.0,
max{β̄, β2} if the current iterate is infeasible and β ≤ 1.0,
1.0 otherwise.

Compute the corrector direction (dX c, dyc, dZc) by solving the system of equations (4), (5)
and (6) with K = βc(X •Z/n)I −XZ − dXpdZp.

Step 4 : Set the next iterate (Xk+1,yk+1,Zk+1) such that

Xk+1 = Xk + αpdXc and (yk+1,Zk+1) = (yk,Zk) + αd(dyc, dZc),

where αp and αd are computed as in [6].

Step 5 : k ←− k + 1 and go to Step 1.

3 Semidefinite Programming for Structural Optimization under
Multiple Eigenvalue Constraints.

The eigenvalues of free vibration as well as the linear buckling load factor, which are calculated by
solving linear eigenvalue problems, are important performance measures of the structures. There-
fore, there have been many researches for optimization of structures under eigenvalue constraints.
Consider a truss with fixed locations of nodes and members which can exist. The vector of mem-
ber cross-sectional areas is denoted by A = {Ai}. Let K and Ms denote the stiffness matrix
and the mass matrix due to the structural mass which are functions of A. The mass matrix for
nonstructural mass is denoted by M0. The eigenvalue problem of vibration is formulated as

KΦr = Ωr(Ms + M0)Φr, (r = 1, 2, . . . , N d) (10)

where Ωr and Φr are the rth eigenvalue and eigenvector, and N d is the number of freedom of
displacements. The eigenvector Φr is normalized by

ΦT
r MΦr = 1. (r = 1, 2, . . . , N d) (11)

Let Ω̄ denote the specified lower bound of the eigenvalues. The topology optimization problem
for specified fundamental eigenvalue is formulated as

OPE: Minimize
Nm∑
i=1

LiAi (12)

subject to Ωr ≥ Ω̄, (r = 1, 2, . . . , N d) (13)
Ai ≥ 0, (i = 1, 2, · · · , Nm) (14)

where Li is the length of the ith member, and Nm is the number of members. The optimal
topology is found by removing the members with Ai ≤ ε, where ε is a small positive lower bound.
A small positive lower bound is usually given for A i to prevent instability of the structure.

It is well known that optimum designs for specified fundamental eigenvalue often have multiple
or repeated eigenvalues. If the fundamental eigenvalue of the optimum design is simple, OPE
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may easily be solved by using a nonlinear programming or an optimality criteria approach [18, 16],
because there is no difficulty in calculating the sensitivity coefficients of Ω1 with respect toAi. In the
case of multiple eigenvalue, only directional sensitivity coefficients can be calculated [7]. Although
some formulations of sensitivity analysis of repeated eigenvalue has been presented [8, 11], it is not
clear if those formulations can be used for optimizing large structures. In this paper, the eigenvalue
problem (10) is converted into a standard form, and solved by using semi-definite programming.

Consider a structure where Ω1 ≥ Ω̄ is satisfied. In this case the Rayleigh’s principle leads to
the following inequality for any admissible mode ψ:

ψT (K− Ω̄M)ψ ≥ 0 (15)

where (11) has been used. This inequality implies that the matrix K− Ω̄M is positive semi-definite,
and formulations of SDP may be possible. The matrices Ki and Mi are defined as

Ki =
∂K
∂Ai

, Mi =
∂Ms

∂Ai
. (16)

Since K and Ms are linear functions of Ai for trusses, those are written as

K =
Nm∑
i=1

KiAi, Ms =
Nm∑
i=1

MiAi (17)

The problems P and D for this case are formulated as

P ’: Minimize
Nm∑
i=1

Liyi (18)

subject to X =
Nm∑
i=1

(Ki − Ω̄Mi)yi − Ω̄M0 (19)

X ∈ Sn,X � O. (20)
D’: Maximize Ω̄M0 •Y (21)

subject to (Ki − Ω̄Mi) •Y = Li (22)
Y ∈ Sn,Y � O. (23)

(24)

Problems P ′ and D′ are solved successively to find optimal solutions. It is important to note
here that the design sensitivity coefficients of eigenvalues with respect to the design variables are
not needed in the optimization process. Therefore, there is no difficulty, as shown in the examples,
in finding the solutions with multiple fundamental eigenvalues.

4 Numerical Results.

Optimal topologies are found for plane trusses, and the computational efficiency and accuracy of
the results are compared among the proposed method using SDP and Parametric Programming
(PP) [14]. In the following example, the material of the members are steel where elastic modulus
E is 205.8 GPa and the mass density ρ is 7.86× 10−3 kg/cm2. In SDP, E and ρ are scaled so that
E = 1000.0 is satisfied to prevent divergence in the process of finding a feasible solution. The
specified eigenvalue is 1000.0 rad2/s2 for all the cases. The computation has been carried out on
Sun Ultra 2 Model 1300 (UltraSPARC-II 296MHz).
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Table 1: Comparison of performances of SDP and PP.
SDP Parametric

Volume (cm3) 6.4493× 105 6.4479× 105

Arch Ω1 (rad2/s2) 1000.0 982.58
(Nm = 174) Ω2 (rad2/s2) 1000.0 1028.2
(N d = 106) Āi (cm2) 0.0 0.001

CPU (s) 38.00(SDPA) 1382.81
599.01(CSDP)

 2.100 × 10  4 kg

Figure 1: A plane arch grid.

 1.000 × 10  -2 m2

Figure 2: Optimal topology of the plane arch grid.
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4.1 A plane arch grid with repeated eigenvalue

Consider a plane arch grid as shown in Fig. 1. Nonstructural masses are located at the nodes along
the lowest circle. The optimal topology found by SDP after removing the members with A i ≤ ε
is as shown in Fig. 2. The results by SDP and PP are listed in Table 1. The cross-sectional areas
are linked in PP so that only symmetric designs are allowed in the optimal topology. A symmetric
solution has been successfully found by SDP without assigning those additional constraints.

The multiplicity of the fundamental eigenvalues of the optimal truss is two. It should be noted
here that the CPU time of PP is very large compared with that of SDP, because the number of
linear equations to be solved simultaneously in PP is almost proportional to the multiplicity of
the fundamental eigenvalue. We can say that the SDPA [4] is much faster than the CSDP [3] from
Table 1.

5 Conclusions

Fujisawa et al. [6] reported that the SDPA is much faster than other softwares for SDPs because the
SDPA incorporates data structures for handling sparse matrices and an efficient method proposed
by Fujisawa et al. [5] for computing search directions when problems to be solved are large scale
and sparse. Sparsity is one particular form of problem structure we exploit here because it is
an important feature arising from SDP relaxation in combinatorial optimization and it has a
straightforward tractable structure. However, we need an accumulation of more numerical results
and knowledge for exploiting other problem structures and we consider them for future work.

The optimum design problem has been formulated as a SDP, and an algorithm has been
presented for topology optimization of trusses for specified fundamental eigenvalue of vibration.
The proposed algorithm is very effective for the cases of optimum designs with multiple eigenvalues,
because sensitivity coefficients of the eigenvalues with respect to the design variables are not
needed in the algorithm. We have seen in other examples the optimum design with up to five-fold
fundamental eigenvalues can be found without any difficulty. Note that no drastic increase has
been observed in CPU time for the case of multiple eigenvalues. In addition of these advantages,
symmetric solutions are found without assigning any side constraints for imposing symmetricity
of the cross-sectional areas.
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