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1 Introduction.

This paper deals with two types of search directions which have been used in many primal-
dual interior-point methods [1, 2, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 19, etc.] for semidefinite
programming. The one is the HRVW/KSH/M direction which was independently pro-
posed by two groups of researchers, Helmberg-Rendl-Vanderbei-Wolkowicz [6] and Kojima-
Shindoh-Hara [8], and later rediscovered by Monteiro [12] in a new formulation. The other is
the NT direction by Nesterov and Todd [13, 14]. The AHO direction given by Alizadeh, Hae-
berly and Overton [1] is another important direction in primal-dual interior-point methods
for semidefinite programming. Global and local convergence of primal-dual interior-point
methods using the HRVW/KSH/M, the NT and the AHO directions have been studied
extensively in many papers [1, 2, 6, 7, 8, 9, 11, 12, 13, 14, 16, 19, etc.], and some compu-
tational results on the three directions have been reported in the papers [1, 2, 6, 17, etc.].
Some computer programs [3, 5, 18] of primal-dual interior-point methods using the three
directions are available through the Internet. The purpose of this paper is to present an effi-
cient method for computing the HRVW/KSH/M and the NT directions when a semidefinite
program to be solved is large scale and sparse.

Let Rn×n denote the set of all n × n real matrices. We regard Rn×n the n2-dimensional
Euclidean space. Let Sn denote the set of all n × n symmetric real matrices; S n forms
a n(n + 1)/2-dimensional linear subspace of Rn×n. For each pair of X and Z in Rn×n,
X • Z stands for the inner product of X and Z, i.e., Tr XTZ, the trace of XTZ. We
write X � O if X ∈ Sn is positive definite, i.e., uTXu > 0 for every nonzero u ∈ Rn,
and X � O if X ∈ Sn is positive semidefinite, i.e., uT Xu ≥ 0 for every u ∈ Rn. Here O
denotes the n × n zero matrix.

Let C ∈ Sn, Ai ∈ Sn (1 ≤ i ≤ m) and ai ∈ R (1 ≤ i ≤ m). Consider the semidefinite
program and its dual:

P : minimize C • X
subject to Ai • X = ai (1 ≤ i ≤ m), X � O.

D : maximize
m∑

i=1

aiyi

subject to
m∑

i=1

Aiyi + Z = C, Z � O.


(1)

Throughout the paper we assume that the set of n×n symmetric matrices Ai (1 ≤ i ≤ m) is
linearly independent. This implies that m ≤ n(n+1)/2. We say that (X ,y,Z) is a feasible
solution (an interior-feasible solution, or an optimal solution, respectively.) of the SDP (1)
if X is a feasible solution (an interior-feasible solution, i.e., a feasible solution satisfying
X � O, or a minimum solution, respectively) of P and (y,Z) is a feasible solution (an
interior-feasible solution, i.e., a feasible solution satisfying Z � O, or a maximum solution,
respectively) of D.

Generic Primal-Dual Interior-Point Method :

Step 0: Set up a stopping criteria, and choose an initial point (X0,y0,Z0) such that
X0 � O and Z0 � O. Let (X,y,Z) = (X0,y0,Z0).

Step 1: If the current iterate (X,y,Z) satisfies the stopping criteria, stop the iteration.

Step 2: Choose a search direction (dX, dy, dZ).
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Step 3: Choose a primal step length αp and a dual step length αd such that

X + αpdX � O and Z + αddZ � O.

Let
X = X + αpdX and (y,Z) = (y,Z) + αd(dy, dZ).

Step 4: Go to Step 1.

Most of the primal-dual interior-point methods developed so far may be obtained if we
specify

• a stopping criteria at Step 0,

• an initial point (X0,y0,Z0) at Step 0,

• a search direction (dX, dy, dZ) at Step 2,

• a primal step length αp and a dual step length αd at Step 3

in the generic primal-dual interior-point method described above. In Section 2, we present
the HRVW/KSH/M and the NT directions which we employ at Step 3. In Section 3, we
propose an efficient method for computing the two directions when some or all of the data
matrices Ai (1 ≤ i ≤ m) are sparse. Section 4 is devoted to computational results on the
proposed method.

2 Search Directions.

The HRVW/KSH/M direction is described as a solution (dX, dy, dZ) of the three types of
equations

Ai • dX = pi (1 ≤ i ≤ m), dX ∈ Sn, (2)
m∑

i=1

Aidyi + dZ = D, dZ ∈ Sn, (3)

d̂XZ + XdZ = K′, d̂X ∈ Rn×n, dX = (d̂X + d̂X
T
)/2. (4)

Here we regard d̂X ∈ Rn×n as an auxiliary variable matrix, and pi ∈ R, D ∈ Sn and
K ′ ∈ Rn×n denote a scalar constant, a n × n constant symmetric matrix, and a n × n
constant matrix, respectively, which are determined by the current point (X,y,Z) and
some other factors. They differ from one method to another. For example, we take

pi = 0 (1 ≤ i ≤ m), D = O and K ′ = β
X • Z

n
I − XZ for some β ∈ (0, 1)

in the feasible-path-following method using the HRVW/KSH/M direction. But their actual
values are not relevant in the succeeding discussions. See the papers [1, 2, 6, 7, 8, 9, 11, 12,
16, 17, 19, etc.] for various primal-dual interior-point methods using the HRVW/KSH/M
direction. Under the linear independence assumption on the set {Ai : 1 ≤ i ≤ m} of
constraint matrices, it is known [8] that for any X � O, Z � O, pi ∈ R (1 ≤ i ≤ m),
D ∈ Sn, and K ′ ∈ Rn×n, the system of equations (2), (3) and (4) has a unique solution
(dX, dy, dZ).

2



The NT direction shares the equations (2) and (3) with the HRVW/KSH/M direction,
but we replace (4) by

dXW−1 + W dZ = K”, (5)

where W = X1/2(X1/2ZX1/2)−1/2X1/2 ∈ Sn, and K” ∈ Rn×n are determined by the
current point (X,y,Z) and some other factors. The NT direction is given as a solution
(dX, dy, dZ) of the system equations (2), (3) and (5). The same comments on the values of
pi ∈ R, D ∈ Sn and K” ∈ Rn×n and on the existence and uniqueness of the direction apply
to the NT direction as in the case of the HRVW/KSH/M direction. See the paper [17] for
more details.

3 Computing Directions.

Todd-Toh-Tütüncü [17] presented some numerically stable methods for computing the AHO,
the NT and the HRVW/KSH/M directions, and reported numerical results showing that
the numerical stability depends on how we compute the directions. Alizadeh, Haeberly and
Overton [2] also proposed some numerically stable methods for the three directions. We will
investigate below how to compute the HRVW/KSH/M and the NT directions. However,
the main issue here is not the numerical stability but the computational efficiency when
some or all of the data matrices Ai (1 ≤ i ≤ m) of the SDP are sparse.

In the HRVW/KSH/M direction case, we reduce the system of equations (2), (3) and
(4) to

B′dy = b′,

dZ = D −
m∑

j=1

Ajdyj ,

d̂X = (K ′ − XdZ)Z−1, dX = (d̂X + d̂X
T
)/2,

 (6)

where

B ′
ij = XAiZ

−1 • Aj (1 ≤ i ≤ m, 1 ≤ j ≤ m), (8)’

b′i = (XD −K ′)Z−1 • Ai + pi (1 ≤ i ≤ m).

The n×n matrix X, the n×n matrix Z−1 and the m×m matrix B ′ are symmetric, and dense
in general even when all Ai (1 ≤ i ≤ m) are sparse. Hence solving the system of equations
(6) in (dX, dy, dZ) by using a direct method such as the Cholesky factorization requires
O(m3) + O(n3) arithmetic operations. On the other hand, if we use the above formulae for
the coefficient matrix B ′ and the right hand side vector b′ in a straightforward way, the
computation of B′ requires O(mn3 +m2n2) arithmetic operations and the computation of b′

O(n3+mn2) arithmetic operations, respectively. Therefore computing the coefficient matrix
B′ is more crucial than computing b′ and solving B′dy = b′ in the entire computation of
the HRVW/KSH/M direction. We will investigate how efficiently we compute the matrix
B′ when some or all of the matrices Ai (1 ≤ i ≤ m) are sparse.

We can reduce the system of equations (2), (3) and (5) describing the NT direction to
a similar system of equations as (6):

B”dy = b”,

dZ = D −
m∑

j=1

Ajdyj,

dX = (K” − W dZ)W ,

 (7)
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where

B”ij = W AiW • Aj (1 ≤ i ≤ m, 1 ≤ j ≤ m), (8)”

b”i = (WD − K”)W • Ai + pi (1 ≤ i ≤ m).

Similar comments apply to the computation of the m × m symmetric matrix B” in (8)”,
the computation of the right hand side vector b”, and solving the system (7) of equations
in the NT direction (dX, dy, dZ) as in the case of the HRVW/KSH/M direction above.

The remainder of this section is devoted to an efficient computation of the m × m
symmetric matrices B ′ and B”. To deal with both directions simultaneously, we consider

Bij = TAiU • Aj (8)

(1 ≤ i ≤ m, 1 ≤ j ≤ m), where T ∈ Sn and U ∈ Sn, If we take T = X and U = Z−1,
then B = B′. If T = U = W then B = B”. Note that B is symmetric; hence we only
need to compute the upper triangular part of B, i.e., Bij (1 ≤ i ≤ j ≤ m).

There are some factors which take part in the CPU time for computing the matrix B
such as multiplications, additions and access time to elements of the sparse data matrices
Ai (1 ≤ i ≤ m). The number of additions is a similar order as the number of multiplications
(see Remark (B) of Section 5 for more details). But access time to elements of the sparse
data matrix Ai is much affected by the data structure for Ai. First we focus our attention
to the number of multiplications, and later we incorporate an overhead of access time to
elements of the sparse data matrices Ai (1 ≤ i ≤ m) into our consideration.

Let fi denote the number of nonzero elements in Ai. Let Σ denote the set of permu-
tations of the indices 1, 2, . . . ,m (i.e., one-to-one mappings from {1, 2, . . . ,m} onto itself).
Each σ ∈ Σ determines an order in computation of the elements Bij (1 ≤ i ≤ m, 1 ≤ j ≤ m)
such that →

Bσ(1)σ(1), Bσ(1)σ(2), . . . Bσ(1)σ(m),
→
Bσ(2)σ(2), . . . Bσ(2)σ(m),

→
. . . . . .

Bσ(m)σ(m).


(9)

Recall that B is symmetric; hence Bσ(j)σ(i) = Bσ(i)σ(j) (1 ≤ i < j ≤ m).

Let σ ∈ Σ and i ∈ {1, 2, . . . ,m} be fixed. We introduce three kinds of formulae for
computing Bσ(i)σ(j) (i ≤ j ≤ m) below.

F -1: Compute F i = Aσ(i)U , which requires nfσ(i) multiplications, and Gi = TF i, which
requires n3 multiplications. For each j = i, i+1, . . . ,m, compute B σ(i)σ(j) = Gi•Aσ(j),
which requires fσ(j) multiplications. Then the total number of multiplications to
compute all Bσ(i)σ(j) (i ≤ j ≤ m) turns out to be

nfσ(i) + n3 +
∑

i≤j≤m

fσ(j). (10)

F -2: Compute F i = Aσ(i)U , which requires nfσ(i) multiplications. For each j = i, i +
1, . . . ,m, compute

Bσ(i)σ(j) =
n∑

α=1

n∑
β=1

[Aσ(j)]αβ

 n∑
γ=1

Tαγ[F i]γβ

 ,
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which requires (n + 1)fσ(j) multiplications. Then the total number of multiplications
to compute all Bσ(i)σ(j) (i ≤ j ≤ m) is given by

nfσ(i) + (n + 1)
∑

i≤j≤m

fσ(j). (11)

F -3: For each j = i, i + 1, . . . ,m, compute

Bσ(i)σ(j) =
n∑

γ=1

n∑
ε=1

 n∑
α=1

n∑
β=1

[Aσ(i)]αβTαγUβε

 [Aσ(j)]γε,

which requires (2fσ(i) + 1)fσ(j) multiplications. Hence the total number of multiplica-
tions to compute all Bσ(i)σ(j) (i ≤ j ≤ m) is given by

(2fσ(i) + 1)
∑

i≤j≤m

fσ(j) (12)

We now introduce an overhead of access time to elements of the sparse data matrices
Ai (1 ≤ i ≤ m). We assume that

(i) all Ai (1 ≤ i ≤ m) are stored in a common sparse data matrix structure,

(ii) the matrices T and U are stored in the standard matrix array since they are generally
dense,

(iii) an access to each element of a matrix stored in the sparse data matrix structure is
slower than an access to each element of a matrix stored in the standard matrix array.

Based on these assumption, we modify (10), (11) and (12) to define “the weighted number
dki(σ) of multiplications” to compute all Bσ(i)σ(j) (i ≤ j ≤ m) by formula F-k (k = 1, 2, 3):

d1i(σ) = κnfσ(i) + n3 + κ
∑

i≤j≤m

fσ(j), (10)’

d2i(σ) = κnfσ(i) + κ(n + 1)
∑

i≤j≤m

fσ(j), (11)’

d3i(σ) = κ(2κfσ(i) + 1)
∑

i≤j≤m

fσ(j). (12)’

Here κ ≥ 1 is a constant. We may regard κ as an overhead caused by access to an element of
sparse data matrices Ai (1 ≤ i ≤ m). If κ = 1 then (10)’, (11)’ and (12)’ coincide with their
original definitions (10), (11) and (12). We employ the weighted number of multiplications
for measuring the efficiency of the formulae F -1, F -2 and F -3. We will take κ = 1.5 in
Section 4 where we report numerical results on formulae F -1, F -2, F-3 and a combination
of them for computing the matrix B.

Let σ ∈ Σ. Define

d∗i(σ) = min{d1i(σ), d2i(σ), d3i(σ)} (1 ≤ i ≤ m), (13)

d∗(σ) =
∑

1≤i≤m

d∗i(σ). (14)
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Then, for each i = 1, 2, . . . ,m), d∗i(σ) denotes the minimum weighted number of multi-
plications to compute Bσ(i)σ(j) (i ≤ j ≤ m) by using any of formulae F -1, F -2 and F -3,
and their sum d∗(σ) over all i = 1, 2, . . . ,m denotes the minimum weighted number of
multiplications that are required to compute all the elements of the matrix B in the order
(9). d∗(σ) depends on σ ∈ Σ, i.e., how we permute the indices 1, 2, . . . ,m before applying
formulae F -1, F-2 and F -3 to computation of the elements of the matrix B. We want
to choose a permutation that minimizes d∗(σ) over all σ ∈ Σ. The theorem below states
that the minimum of d∗(σ) over all σ ∈ Σ is attained if we sort the indices according to
f1, f2, . . . , fm in a descending order.

Theorem 3.1. (i) σ∗ is a minimizer of d∗(σ) over all σ ∈ Σ if and only if it satisfies

fσ∗(1) ≥ fσ∗(2) ≥ . . . ≥ fσ∗(m). (15)

(ii) Suppose that σ∗ ∈ Σ satisfies (15). Then there exist q1 ∈ {0, 1, 2, . . . ,m} and q2 ∈
{q1, q1 + 1, . . . ,m} such that

d1i(σ
∗) ≤ d2i(σ

∗), d1i(σ
∗) ≤ d3i(σ

∗) if 0 < i ≤ q1,
d2i(σ

∗) < d1i(σ
∗), d2i(σ

∗) ≤ d3i(σ
∗) if q1 < i ≤ q2,

d3i(σ
∗) < d1i(σ

∗), d3i(σ
∗) < d2i(σ

∗) if q2 < i ≤ m.

 (16)

Proof: See Appendix.

Based on the theorem above, we now propose:

Combined Formula F-*(κ):

Step A: Count the number fi of nonzero elements in Ai (1 ≤ i ≤ m).

Step B: Sort the set of indices 1, 2, . . . ,m according to f1, f2, . . . , fm in a descending order
as given in (15), where σ∗ is a permutation of the index set {1, 2, . . . ,m}. For each
i = 1, 2, . . . ,m, compute d1i(σ

∗) by (10)’, d2i(σ
∗) by (11)’ and d3i(σ

∗) by (12)’. Find
q1 ∈ {0, 1, 2, . . . ,m} and q2 ∈ {q1, q1 + 1, . . . ,m} satisfying (16).

Step C: For every i ∈ {1, 2, . . . ,m},
• use formula F -1 if 0 < i ≤ q1, or

• use formula F -2 if q1 < i ≤ q2, or

• use formula F -3 otherwise (i.e., if q2 < i ≤ m)

to compute Bσ∗(i)σ∗(j) (i ≤ j ≤ m).

We can easily incorporate these three steps into a generic primal-dual interior-point
method using the HRVW/KSH/M direction or the NT direction. We place Step A where
we read data matrices Ai (1 ≤ i ≤ m), and Step B right after Step A. Hence we execute
both steps once in the method. On the other hand, we place Step C where we compute a
direction. Hence we need to execute Step C repeatedly at each iteration of the primal-dual
interior-point method.
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4 Numerical Results.

In this section, we present some numerical results on formulae F -1, F -2, F -3 and F-∗(κ) for
four kinds of SDPs. One is a randomly generated SDP, and the others are SDP relaxations
of the quadratic assignment problem, the graph partitioning problem and the maximum
clique problem. We applied a modified version of the SDPA [5] using the HRVW/KSH/M
search direction to all SDPs. The numerical results were computed on DEC Alpha (CPU
21164-300MHz with 256MB memory). In general, the overhead parameter κ caused by
access to an element of sparse data matrices Ai (1 ≤ i ≤ m) depends on a data structure
for Ai (1 ≤ i ≤ m). We employed a sparse data structure illustrated in Figure 1. We made
preliminary numerical experiments to estimate κ = 1.5.

Figure 1: Data Structure for Sparse Data Matrices.

Ai =


11 0 13 0 0
0 0 0 0 25

13 0 33 0 0
0 0 0 0 0
0 25 0 0 0


⇓

row → 1 1 2 3
column → 1 3 5 3

value → 11 13 25 33

4.1 Randomly Generated SDPs.

Let p be a positive integer. Define a function f(·;m,n, p) : {1, 2, . . . ,m} → {1, 2, . . . , n 2}
by

f(i;m,n, p) =

[
(n2 − 1)(m − i)p

(m − 1)p
+ 1

]
,

where [a] denotes the largest integer not less than a. To construct an SDP, we randomly
generated a n×n data matrix Ai ∈ Sn which expectedly had f(i;m,n, p) nonzero elements
(1 ≤ i ≤ m) (If Ai = O then we modified it so that it had at least one nonzero element).
The parameter p controls how fast the expected number of nonzero elements in the n × n
symmetric matrix Ai decreases as i increases from 1 to m. For any choice of p, A1 has n2

nonzero elements and Am at least one nonzero element. We took p = log2 n, so that A[m/2]

expectedly had about n nonzeros. Table 1 shows numerical results. The columns F -1, F -2,
F -3 and F-∗(1.5) denote the average CPU time in second to compute the m×m matrix B
per iteration when we used the formulae F-1, F -2, F -3 and F -∗(1.5) (the combined formula
F -∗(κ) with κ = 1.5), respectively. The last column denotes “the average CPU time of one
iteration in second - the average CPU time to compute B in second” when we used formula
F -∗(1.5). One iteration consists of computation of the matrix B, a search direction, a step
length, a new iterate, etc. Each average CPU time in Table 1 was taken over the first
10 iterations. Recall also that q1 and q2 denote the positive numbers determined by (16),
i.e., in the combined formula F-∗(1.5), to compute Bσ∗(i)σ∗(j) (i ≤ j ≤ m), we used F-1 if
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Table 1: Randomly Generated SDPs.

one iteration
p n m F -1 F -2 F-3 F -∗(1.5) q1 q2 −F -∗(1.5)
5 32 32 0.07 0.08 1.65 0.04 11 20 0.08
5 32 64 0.14 0.30 5.87 0.09 26 40 0.10
5 32 128 0.30 1.02 23.19 0.22 62 80 0.14
6 64 64 1.10 1.79 71.56 0.59 22 39 0.71
6 64 128 2.24 7.02 279.45 1.33 52 76 0.77
6 64 256 4.75 23.81 - 3.14 118 152 1.09
7 128 128 19.89 - - 11.98 49 79 6.43
7 128 256 42.82 - - 24.07 99 147 7.06

0 < i ≤ q1, F -2 if q1 < i ≤ q2 and F -3 otherwise (i.e., if q2 < i ≤ m). We see from Table 1
that

• formula F -∗(1.5) works efficiently, and

• as m increases, the CPU time to compute B becomes more crucial in the CPU time
of one iteration.

Figures 2 and 3 compare the weighted number d∗i(σ∗) = min{d1i(σ
∗), d2i(σ

∗), d3i(σ
∗)}

of multiplications with the average CPU time to compute Bσ∗(i)σ∗(j) (i ≤ j ≤ m) per
iteration for the case of p = 7, n = 128 and m = 256. We observe that our theoretical
efficiency measure dki(σ

∗) for formula F -k works quite nicely (k = 1, 2, 3).
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Figure 2: Weighted number d∗i(σ∗) of multiplications for the case: p = 7, n = 128
and m = 256
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Figure 3: Average CPU time to compute Bσ∗(i)σ∗(j) (i ≤ j ≤ m) for the case: p = 7,
n = 128 and m = 256
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Table 2: Quadratic Assignment Problems.

one iteration
s n m F -1 F -2 F -3 F -∗(1.5) q1 = q2 −F -∗(1.5)
5 26 136 0.14 0.12 2.15 0.04 10 0.10
6 37 229 0.67 0.48 11.73 0.13 12 0.34
7 50 358 3.33 1.91 56.52 0.42 14 1.32
8 65 529 8.29 4.65 - 0.90 16 3.16
9 82 748 22.89 11.79 - 1.99 18 11.08

10 101 1021 61.28 29.47 - 4.50 20 36.75

4.2 Quadratic Assignment Problems.

As a SDP relaxation of quadratic assignment problems (see, for example, [15, 20]), we
generated SDPs of the form (1) with n = s2 +1, m = 2s+ s3 +1, 2s Ai’s having s4 nonzero
elements, s2 Ai’s having 3 nonzero elements, (s3 − s2) Ai’s having 2 nonzero elements
and one Ai having 1 nonzero element. Here s denotes the size of a quadratic assignment
problem. In this case, we have that

fσ∗(i) = s4 (1 ≤ i ≤ 2s),

fσ∗(i) ∈ {1, 2, 3} (2s + 1 ≤ i ≤ 2s + s3 + 1),

d1i(σ
∗) < d2i(σ

∗) and d1i(σ
∗) < d3i(σ

∗) (1 ≤ i ≤ 2s),

d3i(σ
∗) < d1i(σ

∗) and d3i(σ
∗) < d2i(σ

∗) (2s + 1 ≤ i ≤ 2s + s3 + 1).

Therefore q1 = q2 = 2s. Table 2 shows numerical results. The combined formula F -∗(1.5)
works very efficiently.

4.3 Graph Partitioning Problems

As SDP relaxation of graph partitioning problems, we generated SDPs of the form (1) with
n = s, m = s + 1, one Ai having s2 nonzero elements and s Ai’s having 1 nonzero element.
Here s denotes the number of nodes. In this case, we have that

fσ∗(1) = s2,

fσ∗(i) = 1 (2 ≤ i ≤ s + 1),

d11(σ
∗) < d21(σ

∗) and d11(σ
∗) < d31(σ

∗),
d3i(σ

∗) < d1i(σ
∗) and d3i(σ

∗) < d2i(σ
∗) (2 ≤ i ≤ s + 1).

Therefore q1 = 1 and q2 = 1. Table 3 shows numerical result, where t denotes the number
of edges. The combined formula F -∗(1.5) works efficiently.

4.4 Maximum Clique Problems.

As SDP relaxation of maximum clique problems, we generated SDPs of the form (1) with
n = s, m = u+1, one Ai having s nonzero elements and u Ai’s having 2 nonzero elements.
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Table 3: Graph Partitioning Problems.

one iteration
s t n m F-1 F -2 F -3 F-∗(1.5) −F-∗(1.5)

124 1271 124 125 21.15 0.56 22.13 0.36 6.36
250 2421 250 251 360.09 5.07 356.96 2.99 59.50
500 5120 500 501 7247.16 52.04 6341.55 29.29 607.23

Table 4: Maximum Clique Problems.

one iteration
s u n m F -1 F-2 F -3 F-∗(1.5) −F-∗(1.5)

150 561 150 562 123.15 5.35 0.36 0.36 13.20
150 1101 150 1102 238.90 19.70 1.46 1.46 44.75
200 621 200 622 336.58 9.30 0.51 0.48 28.82
200 992 200 993 540.16 28.73 1.27 1.32 50.28
250 651 250 652 980.63 19.01 0.59 0.61 63.43
250 972 250 973 1396.54 40.86 1.54 1.33 80.04
300 943 300 944 2472.22 43.01 1.40 1.29 120.21

Here s denotes the number of nodes and u denotes the number of pairs of nodes having no
edge between them (or “n(n − 1)/2 − the number of edges”). In this case, we have that

fσ∗(1) = s,

fσ∗(i) = 2 (2 ≤ i ≤ u + 1),

d21(σ
∗) < d11(σ

∗) and d21(σ
∗) < d31(σ

∗),
d3i(σ

∗) < d1i(σ
∗) and d3i(σ

∗) < d2i(σ
∗) (2 ≤ i ≤ u + 1).

Therefore q1 = 0 and q2 = 1. Table 4 shows numerical result. Again the combined formula
F -∗(1.5) works efficiently.

5 Concluding Remarks.

(A) We have assumed the matrix F i = Aσ(i)U to be stored as a dense matrix when we
count the number n3 of multiplications to compute Gi = TF i in formula F -1, and when
we count the number (n + 1)fσ(j) of multiplications to compute

Bσ(i)σ(j) =
n∑

α=1

n∑
β=1

[Aσ(j)]αβ

 n∑
γ=1

Tαγ[F i]γβ

 .

It should be noted that a γth row of the matrix F i = Aσ(i)U becomes the zero vector
whenever the γth row of Aσ(i) is the zero vector (1 ≤ γ ≤ n). Let gσ(i) denote the number

of nonzero rows of the symmetric data matrix Aσ(i). Then
√

fσ(i) ≤ gσ(i) ≤ min{n, fσ(i)}
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since Aσ(i) is symmetric. If we incorporate the sparsity of the matrix F i = Aσ(i)U into our
consideration, we replace (10) by

nfσ(i) + gσ(i)n
2 +

∑
i≤j≤m

fσ(j),

and (11) by
nfσ(i) + (gσ(i) + 1)

∑
i≤j≤m

fσ(j),

respectively. Such a modification is effective when gσ(i) < n. But we also mention that if
gσ(i) is sufficiently small (or more precisely, if gσ(i) = O(1)), formula F -3 looks more efficient
than formulae F-1 and F -2 even with such a modification; hence formulae F -1 and F -2 are
not likely to be used.

(B) We can evaluate the numbers of additions in formulae F -1, F-2 and F-3 to compute
Bσ(i)σ(j) (i ≤ j ≤ m). The numbers of additions in formulae F -1 and F -2 coincide with the
numbers of multiplications in formulae F -1 and F -2, respectively. See (10) and (11). But
the number of additions in formulae F -3 is smaller than the number of multiplication given
in (12);

“the number of multiplication” = (2fσ(i) + 1)
∑

i≤j≤m

fσ(j)

> (fσ(i) + 1)
∑

i≤j≤m

fσ(j) = “the number of additions”.

We learned through our numerical experiments that formula F -3 works more efficiently than
what we expect from our theoretical analysis in Section 4. In fact, we observe a little jump
of the curve at q2 = 147 in Figure 3, and we also observe in Table 4 that formula F -3 works
as efficiently as formula F -∗(1.5). These facts may be partially explained by the number of
additions which we have not taken account of.

(C) We can combine our method for computing the coefficient matrix B = B ′ of the
system of equations in (6) (or the coefficient matrix B = B ′′ of the system of equations
in (7)) in Section 3 with indirect or iteration methods (such as the conjugate direction
method) for solving the system of equations Bdy = b. In those methods we repeatedly
compute u = Bv for different v’s in Rm. It should be noted that each element ui is of
the form ui =

∑
1≤j≤m

Bijvj (1 ≤ i ≤ m). Therefore we can compute u = Bv without storing

the entire matrix B. This advantage of iteration methods is crucial when the number m
of the equality constraints of the SDP (1) is too large to store the entire matrix B in the
computer memory. In fact, the conjugate gradient method was applied to large scale SDPs
arising from relaxations of the quadratic assignment problem ([10, 20, etc.]).

(D) Suppose that the data matrices Ai (0 ≤ i ≤ m) of the SDP (1) share a common block
diagonal matrix structure as follows:

Ai =


A0

i O . . . O
O A1

i . . . O
. . . . . .
O O . . . A�

i

 . (17)
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Here Ak
i denotes a nk × nk symmetric matrix (0 ≤ k ≤ �). In this case we can represent

the coefficient matrix B = B ′ of the system of equations in (6) (or the coefficient matrix
B = B′′ of the system of equations in (7)) as

B =
∑

0≤k≤�

Bk and Bk
ij = T kAk

i U
k • Ak

j (0 ≤ k ≤ �).

Therefore we can apply the method given in Section 3 to computation of each Bk separately
(0 ≤ k ≤ �). Such a block diagonal matrix structure often appears in semidefinite programs
arising from the system and control theory. See [4]. Also, when we are given inequality
constraints

A0
i •X0 ≤ bi (1 ≤ i ≤ m) and X0 � O,

we can convert them to equality constraints

Ai • X = bi (1 ≤ i ≤ m) and X � O

by defining the matrices Ai (1 ≤ i ≤ m) by (17) with

� = m, nk = 1 (1 ≤ k ≤ m) and Ak
i =

{
1 if k = i,
0 otherwise ,

where X is a variable symmetric matrix having the same block diagonal structure as Ai;

X =


X0 O . . . O
O X1 . . . O
. . . . . .
O O . . . X �

 .
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Appendix: Proof of Theorem 3.1.

We first prove two lemmas.

Lemma A.1. Let σ be a permutation of {1, 2, . . . ,m}. Suppose that fσ(�) < fσ(�+1) for
some � ∈ {1, 2, . . . ,m− 1}. Define the permutation τ by

τ (i) =


σ(i) if 1 ≤ i < � or � + 1 < i ≤ m,
σ(� + 1) if i = �,
σ(�) if i = � + 1.

Then d∗(σ) > d∗(τ ).

Proof: For simplicity of notation, we assume that σ(i) = i (i = 1, 2, . . . ,m). We see
from the assumption that

τ (i) =


i if 1 ≤ i < � or � + 1 < i ≤ m,
� + 1 if i = �,
� if i = � + 1,

f� < f�+1, (18)

d∗i(σ) = d∗i(τ ) if 1 ≤ i < � or � + 1 < i ≤ m.

Hence it suffices to show that the inequality

d∗�(σ) + d∗(�+1)(σ) > d∗�(τ ) + d∗(�+1)(τ ) (19)

holds under the assumption (18). Furthermore we know by definition that

dq�(τ ) ≥ d∗�(τ ) for any q ∈ {1, 2, 3},
dr(�+1)(τ ) ≥ d∗(�+1)(τ ) for any r ∈ {1, 2, 3}.

Therefore the inequality (19) follows if

d∗�(σ) + d∗(�+1)(σ) ≥ dq�(τ ) + dr(�+1)(τ ) (20)

holds for some q, r ∈ {1, 2, 3}. To derive (20) for some q, r ∈ {1, 2, 3}, we take q and r
as follows:

(a) If d∗�(σ) = d1�(σ) and d∗(�+1)(σ) = d1(�+1)(σ) then let q = 1 and r = 1 .

(b) If d∗�(σ) = d1�(σ) and d∗(�+1)(σ) = d2(�+1)(σ) then let q = 1 and r = 2 .

(c-1) If d∗�(σ) = d1�(σ), d∗(�+1)(σ) = d3(�+1)(σ) and 2κ
∑

�≤j≤m fj ≥ n then let q = 1
and r = 3 .

(c-2) If d∗�(σ) = d1�(σ), d∗(�+1)(σ) = d3(�+1)(σ) and 2κ
∑

�≤j≤m fj < n then let q = 3
and r = 3 .

15



(d) If d∗�(σ) = d2�(σ) and d∗(�+1)(σ) = d1(�+1)(σ) then let q = 1 and r = 2 .

(e) If d∗�(σ) = d2�(σ) and d∗(�+1)(σ) = d2(�+1)(σ) then let q = 2 and r = 2 .

(f-1) If d∗�(σ) = d2�(σ), d∗(�+1)(σ) = d3(�+1)(σ) and 2κ
∑

�≤j≤m fj ≥ n then let q = 2
and r = 3 .

(f-2) If d∗�(σ) = d2�(σ), d∗(�+1)(σ) = d3(�+1)(σ) and 2κ
∑

�≤j≤m fj < n then let q = 3
and r = 3 .

(g) If d∗�(σ) = d3�(σ) and d∗(�+1)(σ) = d1(�+1)(σ) then let q = 1 and r = 3 .

(h-1) If d∗�(σ) = d3�(σ), d∗(�+1)(σ) = d2(�+1)(σ) and 2κf�+1 ≥ n then let q = 2
and r = 3 .

(h-2) If d∗�(σ) = d3�(σ), d∗(�+1)(σ) = d2(�+1)(σ) and 2κf�+1 < n then let q = 3
and r = 3 .

(i) If d∗�(σ) = d3�(σ) and d∗(�+1)(σ) = d3(�+1)(σ) then let q = 3 and r = 3 .

In each of the cases, it is easy to derive the inequality (20). Here we only deal with cases
(c-1) and (c-2). Suppose that

d∗�(σ) = d1�(σ), d∗(�+1)(σ) = d3(�+1)(σ) and 2κ
∑

�≤j≤m

fj ≥ n.

Then (
d1�(σ) + d3(�+1)(σ)

)
−

(
d1�(τ ) + d3(�+1)(τ )

)
= κ(f�+1 − f�)

2κ
∑

�≤j≤m

fj − n

 + κ(f�+1 − f�) > 0.

Thus we have shown the inequality (20) in case (c-1). Now assume that

d∗�(σ) = d1�(σ), d∗(�+1)(σ) = d3(�+1)(σ) and 2κ
∑

�≤j≤m

fj < n.

Then (
d1�(σ) + d3(�+1)(σ)

)
−

(
d3�(τ ) + d3(�+1)(τ )

)
= κf�

n − 2κ
∑

�≤j≤m

fj

 + n3 + κ(f�+1 − f�) > 0.

Thus we have shown the inequality (20) in case (c-2). We can derive the other cases
similarly. The details are omitted.

Lemma A.2. Let σ be a permutation of {1, 2, . . . ,m} and i ∈ {1, 2, . . . ,m− 1}. Suppose
that fσ(i) ≥ fσ(i+1) for some i ∈ {1, 2, . . . ,m − 1}.
(a) If d2i(σ) ≤ d1i(σ) then d2(i+1)(σ) < d1(i+1)(σ).

(b) If d3i(σ) ≤ d1i(σ) then d3(i+1)(σ) < d1(i+1)(σ).
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(c) If d3i(σ) ≤ d2i(σ) then d3(i+1)(σ) < d2(i+1)(σ).

Proof: For simplicity of notation, we assume that σ(j) = j (j = 1, 2, . . . ,m), and use
the notation d1j , d2j and d3j for d1j(σ), d2j(σ) and d3j(σ), respectively.

(a) By (10)’ and (11)’ we see that(
d1(i+1) − d2(i+1)

)
− (d1i − d2i) = nκfi > 0.

Hence (d1i − d2i) ≥ 0 implies
(
d1(i+1) − d2(i+1)

)
> 0.

(b) By (10)’ and (12)’ we see that

(
d1(i+1) − d3(i+1))

)
= n3 + κfi+1

n − 2κ
∑

i+1≤j≤m

fj

 .

Hence, if

n − 2κ
∑

i+1≤j≤m

fj

 ≥ 0 then
(
d1(i+1) − d3(i+1)

)
> 0. Now assume thatn − 2κ

∑
i+1≤i≤m

fj

 < 0. Then

(
d1(i+1) − d3(i+1)

)
− (d1i − d3i)

= 2(κfi)
2 + κ(fi − fi+1)

2κ
∑

i+1≤j≤m

fj − n

 > 0.

Hence (d1i − d3i) ≥ 0 implies
(
d1(i+1) − d3(i+1)

)
> 0.

(c) By (11)’ and (12)’, we see that if n ≥ 2κfi+1 or n ≥ 2κ
∑

i+1≤j≤m

fj then

(
d2(i+1) − d3(i+1)

)
= nκfi+1 + (n − 2κfi+1) κ

∑
i+1≤j≤m

fj

=

n − 2κ
∑

i+1≤j≤m

fj

 κfi+1 + nκ
∑

i+1≤j≤m

fj > 0.

Now assume that n < 2κfi+1 and n < 2κ
∑

i+1≤j≤m

fj . Then

(
d2(i+1) − d3(i+1)

)
− (d2i − d3i)

= κ(fi − fi+1)

2κ
∑

i+1≤j≤m

fj − n

 + κfi (2κfi − n)

≥ fi (2fi+1 − n) > 0.

Hence (d2i − d3i) ≥ 0 implies
(
d2(i+1) − d3(i+1)

)
> 0.
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Now we are ready to prove Theorem 3.1. Let σ∗ be a minimizer of d∗(σ) over σ ∈ Σ.
Assume on the contrary that σ∗ does not satisfy the relation (15). Then there is an index
� ∈ {1, 2, . . . ,m− 1} such that fσ∗(�) < fσ∗(�+1). Hence, applying Lemma A.1, we can find a
τ ∈ Σ such that d∗(τ ) < d∗(σ∗). This is a contradiction. Thus we have shown that σ∗ ∈ Σ
satisfies (15).

Now suppose that σ∗ ∈ Σ satisfies (15). Since the number of elements in Σ is finite,
d∗ : Σ → R attains the minimum at some τ ∈ Σ, which must satisfy the relation

fτ(1) ≥ fτ(2) ≥ . . . ≥ fτ(m) (15)’

Since the relations (15) and (15)’ imply that fσ(i) = fτ(i) for every i ∈ {1, 2, . . . ,m}, we
obtain that d∗(σ) = d∗(τ ). Therefore σ∗ ∈ Σ is a minimizer of d∗(σ) over all σ ∈ Σ.

Assertion (ii) of the theorem follows from Lemma A.2.
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