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Abstract
Topology optimization problem of trusses for specified eigenvalue of vibration is formulated as Semi-
Definite Programming (SDP), and an algorithm is presented based on the Semi-Definite Program-
ming Algorithm (SDPA) which utilizes extensively the sparseness of the matrices. Since the sensi-
tivity coefficients of the eigenvalues with respect to the design variables are not needed, the SDPA is
especially useful for the case where the optimal design has multiple fundamental eigenvalues. Global
and local modes are defined and a procedure is presented for generating optimal topology from the
practical point of view. It is shown in the examples, that SDPA has advantage over existing meth-
ods in view of computational efficiency and accuracy of the solutions, and an optimal topology with
five-fold fundamental eigenvalue is found without any difficulty.

1 Introduction

The eigenvalues of free vibration as well as the linear buckling load factor are important performance
measures of the structures. Therefore there have been many studies for optimization of structures
under eigenvalue constraints. It is well known that optimum designs for specified fundamental
eigenvalue often have multiple (repeated) eigenvalues. Such an optimal structure was first presented
by Olhoff and Rasmussen [1] where necessary conditions for optimality are discussed and an optimal
column under buckling constraint is found by using an optimality criteria approach. Masur [2]
showed that the necessary conditions by Olhoff and Rasmussen [1] are also sufficient conditions in
the case of bimodal optimal solution of symmetric structures. Early developments in this field are
summarized in [3].

Difficulties in optimizing distributed parameter structures for specified multiple eigenvalues have
been discussed extensively in [4]. It has been shown that the multiple eigenvalues are not differen-
tiable in ordinary sense, and only directional derivatives with respect to the design variables may be
calculated. There have been many results presented for bimodal optimal solutions of columns, arches
and plates. Bochenek and Gajewski [5] found optimal cross-sectional areas of arches that have at
most three-fold eigenvalues of in-plane and out-of-plane buckling. For finite dimensional structures
with moderately large number of design variables, however, it is very difficult to find optimum de-
signs for structures with multiple eigenvalues by using conventional approaches of optimality criteria
method or mathematical programming.

Several computational approaches have been developed for sensitivity analysis of multiple eigen-
values of finite dimensional structures [6–9]. Khot [10] presented an optimality criteria approach
for optimum design of trusses with multiple frequency constraints. Rodriguez et al. [11] developed
necessary conditions for optimality for problems under constraints on linear buckling load factor, and
presented an adjoint variable formulation for sensitivity analysis. Recent developments in this field
are summarized in the review paper by Seyranian et al. [12]. In spite of theoretical developments for
sensitivity analysis of multiple eigenvalues and optimization methods for problems under multiple
eigenvalue constraints, no globally convergent algorithm seems to have been presented for optimiza-
tion of large structures. Nakamura and Ohsaki [13] presented a parametric programming approach
to trace a set of optimal solutions under multiple eigenvalue constraints. Although their method
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has been shown to be effective for bimodal case, it is very difficult to extend it to the problems
with larger multiplicity of eigenvalues. In order to overcome the difficulties due to multiplicity of
eigenvalues, we present in this paper an algorithm based on the Semi-Definite Programming (SDP)
which does not need explicit derivatives of eigenvalues with respect to the design variables.

The SDP is an extension of linear programming in a sense that in addition to linear constraints,
it allows the constraints that require matrices to be positive semi-definite (notice that those con-
straints cannot be expressed as linear constraints). The SDP unifies several convex optimization
problems (e.g., linear and quadratic programming) and finds many applications in engineering and
combinatorial optimization [14]. Many interior-point methods for linear and quadratic programming
have been extended to solve SDPs. As in linear programming, these methods have polynomial time
worst-case complexity and perform very well in practice. As a result, SDPs are not much harder to
solve than ordinary linear and quadratic programming problems. The SDP has been shown to be
effective for topology optimization of trusses considering compliance under given static loads [15, 16],
where the maximum value of the compliances among the specified set of loads is minimized under
the constraint on total structural volume. Among several softwares for SDPs that are currently
available, SDPA (Semi-Definite Programming Algorithm) [17] seems to be fastest. It is a C++
implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method [18, 19]
for solving the standard form of SDP. The SDPA incorporates data structures for handling sparse
matrices and an efficient method proposed by Fujisawa et al. [20] for computing search directions
for problems with large sparse matrices.

In this paper, the topology optimization problem for specified eigenvalue of vibration is formu-
lated as SDP, and optimal topologies are computed for several examples of plane and space trusses
by applying the SDPA. In the examples, in order to see the effectiveness of the proposed method
in view of computational efficiency and accuracy of the solutions, we compare the computational
results with those computed by existing parametric programming approach and sequential quadratic
programming method. Computational experiments demonstrate that the SDPA computes optimal
solutions more accurately and more efficiently than the other two methods. More notably, in the
example of a double-layer grid, an optimal solution with five-fold fundamental eigenvalues can be
generated without any difficulty, which could not be obtained by the other two methods. These
results indicate that the SDPA successfully resolves the computational difficulty that most of the
existing methods are faced with in optimization of structures with multiple fundamental eigenvalues.

As is shown in the examples, however, for the most cases there exist secondary members with
small cross-sectional areas in the optimal topology, and multiplicity of fundamental eigenvalues
should be considered even for a simple truss with small number of members. Those secondary
members are needed to prevent the local flexural vibration of a long member formed by straightly
linking short members with moderately large cross-sectional areas. From the practical point of view,
the optimal topology with secondary members may be very difficult to be constructed. Therefore
the secondary members may be removed, if necessary, and the unstable nodes are to be fixed to
generate a practically optimal topology [23].

2 Outline of SDPA

Let Rn×n and Sn ⊂ Rn×n denote the set of all n × n real matrices and the set of all n × n real
symmetric matrices, respectively. We use the notation U•V for the inner product of U, V ∈ Rn×n,
i.e. U • V =

∑n
i=1

∑n
j=1 UijVij , where Uij and Vij denote the (i, j)th element of U and V,

respectively. We write X � O and X � O when X ∈ Sn is positive semi-definite and positive
definite, respectively.

Let Fi ∈ Sn (i = 0, · · · ,m), b ∈ Rm and y ∈ Rm. The SDPA solves the standard form SDP and
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its dual:

P : Minimize F0 •X,
subject to Fi •X = bi (i = 1, · · · ,m), X ∈ Sn, X � O.

D: Maximize
m∑

i=1

biyi,

subject to
m∑

i=1

Fiyi + Z = F0, Z ∈ Sn, Z � O.




(1)

For simplicity, we say that (X,y,Z) is a feasible solution, an interior-feasible solution, or an optimal
solution, respectively, of the SDP (1) if X is a feasible solution, an interior-feasible solution (i.e.,
a feasible solution satisfying X � O), or a minimizing solution, respectively, of P and (y,Z) is
a feasible solution, an interior-feasible solution (i.e., a feasible solution satisfying Z � O), or a
maximizing solution, respectively, of D.

In the remainder of this section, we briefly explain the HRVW/KSH/M search direction [18]
which we employ in this paper and the algorithmic framework of the SDPA.

2.1 Search direction

In general, the computation of a search direction is a most time-consuming part of computer pro-
grams for SDPs including the SDPA. Among many search directions proposed by several groups of
researchers [20], we employ the HRVW/KSH/M direction [18] in our numerical experiments because
its computation is the cheapest (particularly, for sparse data matrices) when we employ the method
proposed by Fujisawa et al. [20]. The HRVW/KSH/M direction is the solution (dX, dy, dZ) of the
system of equations

Fi • dX = pi (i = 1, · · · ,m), dX ∈ Sn,
m∑

i=1

Fidyi + dZ = D, dZ ∈ Sn,

d̂XZ + XdZ = K, d̂X ∈ Rn×n, dX = (d̂X + d̂X
T
)/2.


 (2)

Here pi ∈ R, D ∈ Sn and K ∈ Rn×n denote a scalar constant, an n× n constant symmetric matrix,
and an n×n constant matrix, respectively, which are determined by the current point (X,y,Z) and
some other factors. Note that d̂X ∈ Rn×n serves as an auxiliary variable matrix. Under the linear
independence assumption on the set {Fi : i = 1, · · · ,m} of constraint matrices, we know [18] that
for any X � O, Z � O, pi ∈ R (i = 1, · · · ,m), D ∈ Sn, and K ∈ Rn×n, the system of equations (2)
has a unique solution (dX, dy, dZ).

We can reduce the system of equations (2) to

Bdy = b, (3)

dZ = D−
m∑

i=1

Fidyi,

d̂X = (K−XdZ)Z−1, dX = (d̂X + d̂X
T
)/2,


 (4)

where

Bij = XFiZ−1 • Fj (i = 1, · · · ,m, j = 1, · · · ,m),
bi = pi − (K−XD)Z−1 •Fi (i = 1, · · · ,m).

}
(5)

The matrices X, Z−1 and B are symmetric and dense in general even when all Fi s (i = 1, · · · ,m)
are sparse. Hence solving the system of equations (3) in dy by using a direct method such as the
Cholesky factorization and the LDLT factorization of B requires O(m3) arithmetic operations. On
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the other hand, if we treat all Fi s (i = 1, · · · ,m) as dense matrices and if we use the above
formulae (5) for the coefficient matrix B in a straightforward way, the computation of B requires
O(mn3 +m2n2) arithmetic operations. Therefore computing the coefficient matrix B is more crucial
than solving Bdy = b in the entire computation of the HRVW/KSH/M direction.

Fujisawa et al. [20] proposed three distinct formulae F1, F2 and F3 for computing B, and their
efficient combination F∗. They demonstrated through numerical experiments that the combined
formula F∗ worked very efficiently when some of Fi s (i = 1, · · · ,m) are sparse. We incorporated
their formula F∗ into SDPA. See [20] for more details.

2.2 The algorithmic framework of SDPA

Step 0 : Set an initial point (X0,y0,Z0) with X0 � O,Z0 � O. Decide on the search direction to
use. Set the parameters: 0.0 < ε∗, 1 < ω∗, 0.01 ≤ β∗ ≤ 0.10 and β∗ ≤ β̄ ≤ 0.20 (The default
values of these parameters are: ε∗ = 1.0× 10−8, ω∗ = 2.0, β∗ = 0.05 and β̄ = 0.1). Let k = 0.

Step 1 : If the current iterate (Xk,yk,Zk) is feasible and the relative gap

|P −D|
max {1.0, (|P |+ |D|) /2}

is smaller than ε∗, then stop the iteration. Here P and D denote the primal and the dual
objective values, respectively. If we detect that there is no feasible solution (X,y,Z) such that
ω∗X0 � X � O and ω∗Z0 � Z � O, then stop the iteration. See [18] for details on how to
find such information on infeasibility.

Step 2 : (Predictor Step) Let

βp =
{

0 if the current iterate is feasible,
β̄ otherwise.

Solve the system of equations (2) with K = βp(X • Z/n)I − XZ to compute the predictor
direction (dXp, dyp, dZp).

Step 3 : (Corrector Step) Let

β =
(X + ᾱpdXp) • (Z + ᾱddZp)

(X • Z)
,

where ᾱp and ᾱd are computed as in [21]. Choose the parameter βc as follows:

βc =




max{β∗, β2} if the current iterate is feasible and β ≤ 1.0,
max{β̄, β2} if the current iterate is infeasible and β ≤ 1.0,
1.0 otherwise.

Compute the corrector direction (dXc, dyc, dZc) by solving the system of equations (2) with
K = βc(X • Z/n)I−XZ− dXpdZp.

Step 4 : Set the next iterate (Xk+1,yk+1,Zk+1) such that

Xk+1 = Xk + αpdXc and (yk+1,Zk+1) = (yk,Zk) + αd(dyc, dZc),

where αp and αd are computed as in [21].

Step 5 : k ←− k + 1 and go to Step 1.
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3 Formulation of topology optimization problem by SDP

Consider a truss with fixed locations of nodes and members that can exist. The vector of member
cross-sectional areas is denoted by A = {Ai}. Let K and Ms denote the stiffness matrix and the
mass matrix due to the structural mass both of which are functions of A. The mass matrix for
nonstructural mass is denoted by M0.

The eigenvalue problem of vibration is formulated as

KΦr = Ωr(Ms + M0)Φr (r = 1, 2, · · · , Nd), (6)

where Ωr and Φr are the rth eigenvalue and eigenvector, respectively, and Nd is the number of
freedom of displacements. The eigenvector Φr is normalized by

ΦT
r (Ms + M0)Φr = 1 (r = 1, 2, · · · , Nd). (7)

Let Ω̄ denote the specified lower bound of the eigenvalues. The topology optimization problem
for specified fundamental eigenvalue is formulated as

TOP: Minimize
Nm∑
i=1

AiLi,

subject to Ωr ≥ Ω̄ (r = 1, 2, · · · , Nd),
Ai ≥ 0 (i = 1, 2, · · · , Nm),


 (8)

where Li is the length of the ith member, and Nm is the number of members. The optimal topology
is found by removing the members with Ai = 0. A small positive lower bound is usually given for
Ai throughout the optimization process in order to prevent instability of the structure.

If the fundamental eigenvalue of the optimum design is simple, TOP may easily be solved by
using a nonlinear programming or an optimality criteria approach [24, 25], because there is no dif-
ficulty in calculating the sensitivity coefficients of Ω1 with respect to Ai. In the case of multiple
eigenvalues, only directional sensitivity coefficients can be calculated [4]. Although some formula-
tions of sensitivity analysis of multiple eigenvalues have been presented [7, 12], it is not clear if those
formulations can be used for optimizing large structures. In this paper, we convert the generalized
eigenvalue problem (6) into a standard form of SDP (1) and solve it by using SDPA.

Consider a structure where Ω1 ≥ Ω̄ is satisfied. In this case the Rayleigh’s principle leads to the
following inequality for any kinematically admissible mode ψ:

ψT [K− Ω̄(Ms + M0)]ψ ≥ 0. (9)

This inequality implies that the matrix {K−Ω̄(Ms+M0)} is positive semi-definite, and formulations
of SDP may be possible. The matrices Ki and Mi are defined as

Ki =
∂K
∂Ai

, Mi =
∂Ms

∂Ai
. (10)

Since K and Ms are linear functions of Ai for trusses, those are written as

K =
Nm∑
i=1

AiKi, Ms =
Nm∑
i=1

AiMi. (11)
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Figure 1: A three-bar pin-jointed truss.

The primal and dual problems of SDP for this case are formulated as

P ′ : Minimize
m∑

i=1

AiLi,

subject to X =
m∑

i=1

(Ki − Ω̄Mi)Ai − Ω̄M0,

X ∈ Sn,X � O,
Ai ≥ 0 (i = 1, 2, · · · , Nm).




(12)

D′ : Maximize Ω̄M0 •Y,
subject to (Ki − Ω̄Mi) •Y ≤ Li,

Y ∈ Sn,Y � O,


 (13)

where m = Nm and n = Nd. Notice here that the roles of P and D of standard formulation of SDP
are exchanged in the above description of P ′ and D′ since the original problem we are concerned with
is written in the form of P ′. Problems P ′ and D′ are solved successively to find optimal solutions by
using the SDPA algorithm. It is important to note here that sensitivity coefficients of eigenvalues
with respect to the design variables are not needed in the optimization process. Therefore there is
no difficulty, as will be shown in the examples, in finding the solutions with multiple fundamental
eigenvalues.

It is well known, however, that optimal pin-jointed trusses often turn out to be unstable. For the
case of stress and displacement constraints, a small lower bound Āi is given for Ai, and those members
with Ai = Āi is removed from the optimal design. Then the unstable nodes are fixed to generate a
stable truss of an optimal topology. Kirsch [22] presented a method for finding an optimal topology
by successively solving linear programming problems while the compatibility conditions for strains
are neglected. For the case of frequency constraints, however, the instability leads to a difficulty
due to multiplicity of the fundamental eigenvalues in the optimal topology [13]. It is discussed in
the following that formulation of multiple eigenvalues is needed even for a simple three-bar truss as
shown in Fig. 1.

Consider a case where lower bounds are given for Ai as

Ai ≥ ξĀ0
i (i = 1, 2, · · · , Nm), (14)

where Ā0
i is a constant value and ξ is a parameter. In [13], the optimal solutions are traced by

decreasing the parameter ξ, and the optimal truss corresponding to ξ = 0 is found by extrapolating
the solutions at a sufficiently small value of ξ. This approach is referred to as parametric programming
approach in the examples. The initial value ξ0 for ξ is given so that Ω1 of the truss with Ai = Āi =
ξ0Ā0

i for all the members is equal to the specified value. If the nonstructural mass at node 3 is
sufficiently large compared with the total structural mass, the lowest eigenmode at the initial design
is such that the nodes 2 and 3 moves horizontally, and the axial deformation of member 3 is negligibly
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small compared with those of members 1 and 2. This type of mode associated with vibration of
nonstructural masses is referred to as global mode in the following.

Since the axial deformation of member 3 is negligibly small, A3 (= ξĀ0
3) decreases as ξ is de-

creased. It is obvious, however, that the pin-jointed truss is unstable if member 3 is removed, and
the fundamental eigenmode is such that the vibration of nonstructural mass is negligibly small. This
type of mode is referred to as local mode in the following. Consequently, there exists a member with
extremely small cross-sectional area and two lowest eigenvalues coincide in the theoretically optimal
truss.

This result suggests that the formulations of multiple eigenvalues are for most cases necessary to
find an optimal topology of a pin-jointed truss, and secondary members with small cross-sectional
areas will exist in the optimal topology. From the practical point of view, however, the optimal
topology with secondary members are not needed, and the designers are not interested in the local
mode which is simply suppressed by adding flexural stiffness at the joints. Therefore a practically
optimal topology may be generated by removing the secondary members and by fixing the unstable
nodes as node 3 in Fig. 1. Note that the fundamental eigenvalue of the practically optimal truss is
simple in this example.

Our purpose here is to compare the performances of SDPA with other existing method in the view
of accuracy and computational efficiency. Therefore the results are discussed before the secondary
members are removed. It may be straightforward to generate practical designs if necessary. A stable
optimal topology may also be found by allowing the members to exist between all the possible pairs
of the nodes. In this case, however, the number of design variables is very large, and substantial
computational effort will be needed.

4 Examples

Optimal topologies are computed for plane and space trusses by the proposed method using SDPA
as well as Parametric Programming (PP) and Sequential Quadratic Programming (SQP) [26], in
order to compare the computational efficiency and accuracy of the results among the three methods.
In the following examples, the material of the members is steel where elastic modulus E is 205.8
GPa and the mass density ρ is 7.86×10−3 kg/cm2. In SDPA, E and ρ are scaled so that E = 1000.0
is satisfied to prevent divergence in the process of finding a feasible solution. The specified eigenvalue
is 1000.0 rad2/s2 for all the cases. The computation has been carried out on Sun Ultra II (Ultra
SPARC II 300MHz with 256 MB memory).

4.1 Plane square grids

Optimal topologies are found for plane square trusses with 2 × 2, 3 × 3, 4 × 4 and 5 × 5 grids to
compare the performances of the methods. A nonstructural mass of 2.1×104 kg is located at the the
upper-right corner for each case. A 5× 5 grid is as shown in Fig. 2, where Li for all the vertical and
horizontal members are 200.0 cm. The optimal topology of 5×5 grid found by SDPA after removing
extremely slender members with Ai < 2.0 × 10−3 cm2 is as shown in Fig. 3, where the width of
each member is proportional to its cross-sectional area. Note from Fig. 3 that there exists a kind
of net with secondary members for preventing instability of the ten-bar truss formed by the primal
members with moderately large cross-sectional areas. Those secondary members cannot be removed
because the two long members, each composed of five short members, will be unstable without those
members.

The multiplicity of the lowest eigenvalues is two, and the corresponding modes are as illustrated
in Fig. 4. It may be observed from Fig. 4 that the displacements of node 9 where the nonstructural
mass is located is very large in the mode (a), whereas local flexural deformation at node 1 dominates
in the mode (b). The local modes such as mode (b) may be suppressed by fixing the unstable
nodes 1-8. The maximum and minimum values of the cross-sectional areas of the primary members
are 43.991 cm2 and 40.566 cm2, respectively, whereas those of the secondary members are 2.2299

7



Figure 2: A 5× 5 plane square grid.

Figure 3: Optimal topology of 5× 5 grid.

cm2 and 6.7598×10−3 cm2, respectively. A practically optimal topology may be found, if necessary,
by removing the secondary members and fixing the unstable nodes 1-8 in Fig. 3 to generate a frame
with two members. Note that the node 9 is not fixed. Let γ denote the radius of gyration of each
member. The fundamental eigenvalue of the frame for γ = 30.0 cm is 973.28 rad2/s2 which is smaller
than the specified value due to the lateral deformation of two long members. The eigenvalue may
be increased by assigning larger value for γ.

The results by SDPA, PP and SQP are listed in Table 1. The optimal solutions for 2 × 2,
3 × 3, and 4 × 4 are as shown in Figs. 5-7, respectively. It may be observed from these results
that the performance of SDPA is better than that of PP in view of accuracy, and CPU time of
SDPA is less than that of SQP. In addition to these advantages, SDPA has no difficulty in finding
optimal solutions with multiple eigenvalues. Note that the difference among the second eigenvalues
computed by three methods is very large, because those are sensitive to the cross-sectional areas of
the secondary members. The second eigenvalues, however, are associated with local modes which
are not practically important.
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Mode (a)
Mode (b)

Figure 4: Eigenmodes of optimal 5× 5 grid.

Figure 5: Optimal topology of 2× 2 grid.

Since formulation of multiple eigenvalues has not been used for SQP, the optimization process
has not converged if Āi = 0.01 for the 5× 5 grid. Therefore moderately large lower bound is needed
for SQP to prevent the divergence due to the multiplicity of eigenvalues. Note again that it is not
important from the practical point of view to find optimal solutions with multiple eigenvalues one of
which is associated with a locally vibrating mode such as mode (b) in Fig. 4. Since CPU time for SQP
will be much larger if the multiplicity of the fundamental eigenvalues is considered, the efficiency of
SDPA compared with SQP has been successfully demonstrated by these examples. Positive lower

Figure 6: Optimal topology of 3× 3 grid.
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Figure 7: Optimal topology of 4× 4 grid.

 2.100 × 10  4 kg

Figure 8: A plane arch grid.

bound on cross-sectional areas are also given for PP to avoid unnecessary computational cost due
to multiplicity of eigenvalues corresponding to locally vibrating modes.

4.2 A plane arch grid

Consider next a plane arch grid as shown in Fig. 8. Nonstructural masses are located at the nodes
along the lowest circle. The optimal topology found by SDPA after removing the members with
Ai < 2.0× 10−3 cm2 is as shown in Fig. 9. The results by SDPA and PP are also listed in Table 1.
For PP, additional constraints for the cross-sectional areas are given in order to ensure that only
symmetric designs are produced. On the other hand, a symmetric solution has been automatically
found by SDPA without requiring such additional constraints.

The multiplicity of the fundamental eigenvalues of the optimal truss is two. The fundamental
eigenmodes are symmetric and antisymmetric, respectively, as shown in Fig. 10, with respect to
the y-axis in Fig. 8, and are the global modes with no significant local bending deformation. Since
the solution has multiple eigenvalues, SQP is not executed for this truss, and thus the result is not
shown in Table 1. It should be noted here that the CPU time of PP is very large compared with that
of SDPA, because the number of linear equations to be solved simultaneously in PP dramatically
increases as the multiplicity of the fundamental eigenvalue is increased.

10



Figure 9: Optimal topology of the plane arch grid.

Figure 10: Eigenmodes of optimal arch grid.
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Table 1: Comparison of performances of SDPA, PP and SQP.
SDPA [20] PP [23] SQP [26]

Plane square grid Volume (cm3) 1.6355× 104 1.6368× 104 1.6357× 104

2× 2 Ω1 (rad2/s2) 1000.0 999.55 1000.0
(Nm = 20) Ω2 (rad2/s2) 2145.3 5977.8 2000.3
(Nd = 14) Āi (cm2) 0.0 0.01 0.001

CPU (s) 0.10 0.83 1.21
Plane square grid Volume (cm3) 3.6886× 104 3.6905× 104 3.6890× 104

3× 3 Ω1 (rad2/s2) 1000.0 999.44 1000.0
(Nm = 42) Ω2 (rad2/s2) 1045.7 2531.6 1011.9
(Nd = 28) Āi (cm2) 0.0 0.01 0.001

CPU (s) 0.43 2.65 5.93
Plane square grid Volume (cm3) 6.5776× 104 6.6126× 104 6.5841× 104

4× 4 Ω1 (rad2/s2) 1000.0 999.49 1000.0
(Nm = 72) Ω2 (rad2/s2) 1005.0 4551.5 1903.0
(Nd = 46) Āi (cm2) 0.0 0.05 0.01

CPU (s) 1.67 5.76 15.96
Volume (cm3) 1.0320× 105 1.0371× 105 1.0446× 105

Plane square grid Ω1 (rad2/s2) 1000.0 999.39 1000.0
5× 5 Ω2 (rad2/s2) 1000.0 3052.9 5219.3

(Nm = 110) Multiplicity 2 1 1
(Nd = 68) Āi (cm2) 0.0 0.01 0.1

CPU (s) 4.50 14.76 44.31
Volume (cm3) 6.4493× 105 6.4497× 105

A plane arch grid Ω1 (rad2/s2) 1000.0 998.93
(Nm = 174) Ω2 (rad2/s2) 1000.0 999.42
(Nd = 106) Multiplicity 2 2

Āi (cm2) 0.0 0.01
CPU (s) 15.04 382.09

Volume (cm3) 8.7110× 105

Double-layer grid Ω1, · · · ,Ω5 (rad2/s2) 1000.0
(Nm = 128) Multiplicity 5
(Nd = 111) Āi (cm2) 0.0

CPU (s) 13.52

Table 2: Symmetricity of the fundamental eigenmodes of the double-layer grid.

xz-plane yz-plane
Mode 1 S S
Mode 2 A S
Mode 3 A S
Mode 4 S A
Mode 5 A A

4.3 A double-layer grid

Consider next a double-layer grid as shown in Fig. 11. Nonstructural masses are located at all the
upper nodes. The lengths of members in x- and y-directions are 300.0 cm and 200.0 cm, respectively,
and the distance between the upper and lower planes is 200.0 cm. The truss has two planes of
symmetry. The optimal topology found by SDPA after removing members with Ai < 2.0 × 10−3

cm2 is as shown in Fig. 12. The optimization results by SDPA is as listed in Table 1. Note that the
values of five lowest eigenvalues are all equal to 1000.0 rad2/s2, i.e. the multiplicity of eigenvalues
of the optimal solution is five, where all the eigenmodes are global modes. Symmetricity properties
of the five fundamental eigenmodes are as listed in Table 2, where S and A indicate symmetric and
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 2.100 × 10  4 kg

Figure 11: A double-layer grid.

antisymmetric, respectively. SDPA has not found any difficulty in computing an optimal solution
even for such case with five-fold fundamental eigenvalues. An extra benefit of using SDPA is that
the symmetric solution has been automatically found for this case without imposing any additional
constraints.

5 Conclusions

The optimum design problem of trusses under constraints on fundamental eigenvalue of vibration
has been formulated as a Semi-Definite Programming (SDP), and an algorithm has been presented
for topology optimization. The proposed algorithm based on the Semi-Definite Programming Algo-
rithm (SDPA) is very effective for the case of optimum designs with multiple eigenvalues, because
sensitivity coefficients of the eigenvalues with respect to the design variables are not needed and
optimal solutions are found without any modification of the algorithm.

Since SDPA fully utilizes sparseness of the matrices, computational cost is very small compared
with those of parametric programming approach and sequential quadratic programming algorithm.
In the examples, an optimum design with at most five-fold fundamental eigenvalues has been found
without any difficulty. Note that no significant increase seems to be observed in CPU time as a
result of multiplicity of eigenvalues. In addition to these advantages, a symmetric solution is found
without assigning any side constraints in order to preserve symmetricity of the cross-sectional areas.

It has been shown in the examples of plane square grids that a kind of net formed by the
secondary members are generated in the optimal topology to prevent the lateral vibration of long
members. A practically optimal topology may be found by removing those secondary members and
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Figure 12: Optimal topology of a double-layer grid.

by fixing the unstable nodes to generate long members with moderately large flexural stiffness.
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